THE FUNDAMENTAL GROUP OF WHITNEY BLOCKS

ALEJANDRO ILLANES

ABSTRACT. Let X be a Peano continuum. Let C(X) be the hyperspace of subcontinua of X, and let $\mu: C(X) \to \mathbf{R}$ be a Whitney map. In this paper we prove: Theorem A. If $0 \le Q < R < S < T \le \mu(X)$, then there exists a surjective homomorphism $\phi: \pi_1(\mu^{-1}(Q,R)) \to \pi_1(\mu^{-1}(S,T))$, where $\pi_1(Y)$ means the fundamental group of Y. Theorem B. If $0 \le S < T \le \mu(X)$, then $\pi_1(\mu^{-1}(S,T))$ is finitely generated. Theorem C. X is a simple closed curve if and only if $\pi_1(\mu^{-1}(S,T))$ is a nontrivial group for every $0 \leq S < T \leq \mu(X)$.

0. Introduction. Throughout this paper X will denote a continuum (a nonempty, compact, connected metric space) with metric d. Let C(X) denote the hyperspace of all subcontinua of X with the Hausdorff metric \mathcal{H} . A map is a continuous function. A Whitney map for C(X) is a map $\mu: C(X) \to \mathbf{R}$ such that (a) $\mu(\{x\}) = 0$ for every $x \in X$, (b) If $A, B \in C(X)$ and $A \subset B \neq A$, then $\mu(A) < \mu(B)$, and (c) $\mu(X) = 1$. A Whitney block for C(X), respectively a Whitney level for C(X), is a set of the form $\mu^{-1}(S,T)$, respectively $\mu^{-1}(T)$, where $0 \leq S < T \leq 1$. The fundamental group of a space Y is denoted by $\pi_1(Y)$.

Hyperspaces are acyclic (see [13, Theorem 1.2]). For Whitney levels, the situation is different; the following observation was made by J.T. Rogers, Jr., in [11]: "As we go higher into the hyperspace, no new one-dimensional holes are created, and perhaps some one-dimensional holes are swallowed." This intuitive statement has found several formulations.

In [12, Theorem 5], J.T. Rogers, Jr., proved:

Theorem. If μ is a Whitney map for C(X) and $0 \le s \le t \le 1$, then there exists a monomorphism

$$\gamma^*: H^1(\mu^{-1}(t)) \longrightarrow H^1(\mu^{-1}(s))$$

Received by the editors on April 29, 1994. AMS (MOS) Subject Classification. Primary 54B20. Key words and phrases. Hyperspaces, Whitney blocks, Whitney levels, fundamental group.