SOME ISOMORPHIC PREDUALS OF ℓ_1 WHICH ARE ISOMORPHIC TO c_0

HELMUT KNAUST

ABSTRACT. We introduce property (FS), which asserts that a Banach space has many c_0 -"sub-decompositions," and show that if X is a Banach space with property (FS) and X^* is isomorphic to ℓ_1 , then X itself is isomorphic to c_0 .

1. Introduction. For quite some time it has been of interest to find out under what circumstances a separable \mathcal{L}_{∞} -space is isomorphic to the simplest example of an \mathcal{L}_{∞} -space, namely c_0 .

Ghoussoub and Johnson [3] showed that a separable \mathcal{L}_{∞} -space, which embeds into an order continuous Banach lattice, is isomorphic to c_0 . (This result is based on earlier results by Johnson and Zippin [6] and Rosenthal [9].)

Using isometric methods, Godenfroy and Li [5] showed that a separable \mathcal{L}_{∞} -space, which can be renormed into an M-ideal in its bidual, is also isomorphic to c_0 .

Godefroy, Kalton and Saphar [4, Proposition 7.8] showed that c_0 is the only isometric predual of ℓ_1 , which is a *u*-ideal.

In [5] the authors pose the question whether an isometric predual of ℓ_1 , which has property (u), is isomorphic to c_0 . We give a partial result in this direction:

Definition 1. A separable Banach space X has property (FS), if every shrinking finite-dimensional decomposition (F_n) of X has the following property: Every increasing sequence (m_n) of positive integers has a further subsequence (k_n) , so that (F_{k_n}) is a c_0 -decomposition for its closed linear span $[F_{k_n}]$.

We call a sequence (F_n) of subspaces of a Banach space X a c_0 -decomposition for its closed linear span, if it satisfies the following:

Received by the editors on June 10, 1994. 1991 AMS Subject Classification. Primary 46B03, 46B25.

Copyright ©1997 Rocky Mountain Mathematics Consortium