A NEW REFINEMENT OF THE ARITHMETIC MEAN–GEOMETRIC MEAN INEQUALITY

HORST ALZER

In what follows, we denote by A_n and G_n the weighted arithmetic and geometric means of the positive real numbers x_1, \ldots, x_n , that is,

$$A_n = \sum_{i=1}^n p_i x_i$$
 and $G_n = \prod_{i=1}^n x_i^{p_i}$,

where p_1, \ldots, p_n are nonnegative real numbers with $\sum_{i=1}^n p_i = 1$.

The famous arithmetic mean—geometric mean inequality $G_n \leq A_n$ has found much attention among many mathematicians, and numerous proofs, refinements, extensions and related results of what E.F. Beckenbach and R. Bellman call "probably the most important inequality, and certainly a keystone of the theory of inequalities," [1, p. 3], can be found in the literature. We refer to the monographs [1, 2, 5, 6] and the references therein.

In 1978, D.I. Cartwright and M.J. Field [3] proved the following interesting sharpening of the arithmetic mean—geometric mean inequality.

(1)
$$\frac{1}{2} \frac{1}{\max_{1 \le i \le n} x_i} \sum_{i=1}^n p_i (x_i - A_n)^2 \le A_n - G_n,$$

with equality holding if and only if the x_i 's corresponding to positive p_i 's are all equal. Moreover, the authors pointed out that the constant $1/(2 \max_{1 \le i \le n} x_i)$ is best possible.

The aim of this paper is to show that inequality (1) remains valid if we replace on the lefthand side of (1) A_n by G_n . Since

$$0 \le (A_n - G_n)^2 = \sum_{i=1}^n p_i (x_i - G_n)^2 - \sum_{i=1}^n p_i (x_i - A_n)^2,$$

Received by the editors on March 10, 1995.

Copyright ©1997 Rocky Mountain Mathematics Consortium