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A SIMPLE PROOF OF FIEDLER’S CONJECTURE
CONCERNING ORTHOGONAL MATRICES

BRYAN L. SHADER

ABSTRACT. We give a simple proof that an n×n orthog-
onal matrix with n ≥ 2 which cannot be written as a direct
sum has at least 4n − 4 nonzero entries.

1. The result. What is the least number of nonzero entries in a real
orthogonal matrix of order n? Since the identity matrix In is orthogonal
the answer is clearly n. A more interesting question is: what is the least
number of nonzero entries in a real orthogonal matrix which, no matter
how its rows and columns are permuted, cannot be written as a direct
sum of (orthogonal) matrices? Examples of orthogonal matrices of each
order n ≥ 2 which cannot be written as a direct sum and which have
4n− 4 nonzero entries are given in [1]. M. Fiedler conjectured that an
orthogonal matrix of order n ≥ 2 which cannot be written as a direct
sum has at least 4n − 4 nonzero entries.

Using a combinatorial property of orthogonal matrices, Fiedler’s con-
jecture was proven in [1]. A (0, 1)-matrix A of order n is combinatorially
orthogonal provided no pair of rows of A has inner product 1 and no
pair of columns of A has inner product 1. Clearly, if Q is an orthogonal
matrix of order n, then the (0, 1)-matrix obtained from Q by replac-
ing each of its nonzero entries by a 1 is combinatorially orthogonal.
A quite lengthy and complex combinatorial argument is used in [1] to
show that if A is a combinatorially orthogonal matrix of order n ≥ 2
and A cannot be written as a direct sum, then A has at least 4n − 4
nonzero entries. Clearly this result implies Fiedler’s conjecture. In this
note we give a simple matrix theoretic proof of Fiedler’s conjecture.
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