ROCKY MOUNTAIN JOURNAL OF MATHEMATICS Volume 27, Number 4, Fall 1997

AN EXAMPLE OF DUAL CONTROL

JOHN ROE

The C^* -algebras introduced by the author [8] to study index theorems on open manifolds are now known to be analytic counterparts of certain module categories appearing in controlled topology [2]. An apparently significant distinction is that the modules used in controlled topology are locally finite-dimensional, whereas the Hilbert spaces used to construct the C^* -algebras are locally infinite-dimensional. In the author's opinion, this distinction arises because the analysis of elliptic operators (which are the basic 'cycles' in analytic representations of K-homology) itself constitutes a form of 'control,' but in a 'spectral' rather than a 'spatial' direction. The purpose of this note is to reinforce this point of view by an example.

Let M be a compact odd-dimensional manifold, and let D be a generalized Dirac operator on M acting on a Hilbert space H of L^2 sections of the appropriate bundle. Then it is well known [1, 5] that D gives a cycle in Kasparov's analytic K-homology for M, and therefore gives a map

$$K^1(M) \longrightarrow \mathbf{Z}.$$

We will show how this map may be obtained using controlled C^* -algebra theory.

Recall [8, 6] that the basic object needed to define the C^* -algebra of a coarse space X is an X-module, that is, a Hilbert space equipped with an action of $C_0(X)$. Now we observe

Lemma 1. The operator D endows H with the structure of an $|\mathbf{R}|$ -module.

(The notation $|\mathbf{R}|$ refers to the underlying coarse space of \mathbf{R} .) To see this we just use the spectral theorem, defining the action of $f \in C_0(\mathbf{R})$ on H by the operator f(D). Observe that elliptic theory

Received by the editors on December 12, 1995, and in revised form on May 1, 1997.

Copyright ©1997 Rocky Mountain Mathematics Consortium