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POINT OF CONTINUITY PROPERTY
AND SCHAUDER BASES

GINÉS LÓPEZ AND JUAN F. MENA

ABSTRACT. We get a characterization of point of conti-
nuity property in Banach spaces with a shrinking Schauder
finite-dimensional decomposition. We also prove that a Ba-
nach space with a shrinking Schauder finite-dimensional de-
composition has the point of continuity property if every sub-
space with a shrinking Schauder basis has it.

1. Introduction. We begin by recalling some geometrical properties
in Banach spaces: (see [2, 4 and 6]).

Let X be a Banach space, C a closed, bounded, convex and nonempty
subset of X and τ a topology in X.

C is said to have the point of τ -continuity property (τ -PCP) if for
every closed subset, F , of C the identity map from (F, τ ) into (F, ‖ ‖)
has some point of continuity.

If C satisfies the above definition with τ the weak topology in X,
then C is said to have the point of continuity property (PCP).

C is said to have the Radon-Nikodym property (RNP) if for every
measure space (Ω, Σ, µ) and for every F : Σ → X, µ-continuous vector
measure, such that

F (A)
µ(A)

∈ C ∀A ∈ Σ, µ(A) > 0

there is f : Ω → X Bochner integrable with

F (A) =
∫

A

f dµ ∀A ∈ Σ.

C is said to have the Krein-Milman property (KMP) if each closed,
convex and nonempty subset of C is the closed convex hull of its extreme
points.
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