ROCKY MOUNTAIN JOURNAL OF MATHEMATICS Volume 27, Number 4, Fall 1997

FINITE HOMOGENEOUS SPACES

ALI FORA AND ADNAN AL-BSOUL

ABSTRACT. We characterize homogeneous topological spaces which contain a nonempty discrete open subset. As a consequence, we characterize and enumerate finite homogeneous topological spaces.

1. Introduction. Several authors studied finite topological spaces with some topological structures, for example, Warren [6] gave a formula for the number of nonhomeomorphic topologies on a finite set by means of T_0 identification spaces.

Mashhour, Abd El-Monsef and Farrag [4] studied the maximum cardinality for topologies on a finite set, and in [3] they studied the number of topologies on a finite set.

A topological space X is called a homogeneous space provided that if p and q are two points of X, then there exists a homeomorphism $h: X \to X$ such that h(p) = q. The concept of homogeneity was introduced by W. Sierpinski [5]. Several mathematicians have studied homogeneous spaces. One may consult [2] for this study.

Let X be any set. By τ_{dis} and τ_{ind} we mean the discrete and indiscrete topologies on X, respectively. |X| denotes the cardinality of the set X. If n is a natural number, $\tau(n)$ will denote the number of positive divisors of n.

2. Finite homogeneous spaces. In this section we shall give a characterization of finite homogeneous spaces, and we shall study the number of finite homogeneous topological spaces (up to homeomorphism).

Let us start with the following definition, see [1, p. 70].

Definition 2.1. Let $\{(X_{\alpha}, \tau_{\alpha}) : \alpha \in \Lambda\}$ be a collection of topological spaces such that $X_{\alpha} \cap X_{\beta} = \emptyset$ for all $\alpha \neq \beta$. Let $X = \bigcup_{\alpha \in \Lambda} X_{\alpha}$ be

Received by the editors on March 28, 1995, and in revised form on November 21, 1995.

Copyright ©1997 Rocky Mountain Mathematics Consortium