FRACTIONAL INTEGRALS OF IMAGINARY ORDER SUPPORTED ON CONVEX CURVES, AND THE DOUBLING PROPERTY

JAMES MARSHALL

1. Introduction and statement of results. Let $\Gamma:[0,\infty)\to \mathbf{R}^n$ be a curve in $\mathbf{R}^n,\ n\geq 2,$ and define

$$H_{\varepsilon}f(x) = \int_{0}^{\infty} f(x - \Gamma(t)) \frac{dt}{(1 + t^2)^{1/2 + i\varepsilon}}$$

and

$$H_{\varepsilon,\delta}f(x) = \int_{\delta}^{\infty} f(x - \Gamma(t)) \frac{dt}{t^{1+i\varepsilon}},$$

for $x \in \mathbf{R}^n$, $f \in C_0^{\infty}(\mathbf{R}^n)$, $\varepsilon > 0$ and $\delta > 0$.

We seek conditions on Γ so that H_{ε} is a bounded linear operator on $L^2(\mathbf{R}^n)$ and the family of operators $\{H_{\varepsilon,\delta}\}$, for a fixed ε , is uniformly bounded on $L^2(\mathbf{R}^n)$.

The motivation for examining these operators is the work done by a number of researchers over the last 20 years in studying the L^p -boundedness of the Hilbert transform \mathbf{H}_{Γ} and the maximal operator \mathbf{M}_{Γ} , defined for $x \in \mathbf{R}^n$ and $f \in C_0^{\infty}(\mathbf{R}^n)$ as follows

$$\mathbf{H}_{\Gamma}f(x) = \text{p.v.} \int_{-\infty}^{\infty} f(x - \Gamma(t)) \frac{dt}{t}$$

(a principle value integral), and

$$\mathbf{M}_{\Gamma}f(x) = \sup_{h>0} \frac{1}{h} \int_0^h |f(x - \Gamma(t))| dt.$$

Early inquiries into the L^p -boundedness of these operators, by Nagel, Rivière, Stein and Wainger, considered well-curved and two-sided homogeneous curves. A curve Γ in \mathbf{R}^n is said to be well-curved if $\Gamma(0) = 0$

Copyright ©1998 Rocky Mountain Mathematics Consortium

Received by the editors on August 21, 1995, and in revised form on February 24, 1996.