ON PROPERTIES OF MULTIPLIERS OF CAUCHY TRANSFORMS

D.J. HALLENBECK AND K. SAMOTIJ

ABSTRACT. In this paper we prove that the lengths of images of certain rectifiable arcs under a multiplier f of fractional analytic Cauchy-Stieltjes transforms on the disk are uniformly bounded by a constant depending on the multiplier norm of f. As a consequence of this result, we also prove that $|f'(z)|^2$ is integrable with respect to area measure on every Stolz angle. Finally, we prove that our results are sharp in two different senses.

1. Introduction. Let $\Delta = \{z : |z| < 1\}$ and let $\Gamma = \{z : |z| = 1\}$. Let \mathcal{M} denote the set of complex-valued Borel measures on Γ . For each $\alpha > 0$, let \mathcal{F}_{α} denote the family of functions f having the property that there exists a measure $\mu \in \mathcal{M}$ such that

(1)
$$f(z) = \int_{\Gamma} \frac{1}{(1 - \bar{x}z)^{\alpha}} d\mu(x)$$

for |z| < 1. In (1) and throughout this paper, each logarithm means the principal branch. \mathcal{F}_{α} is a Banach space with respect to the norm defined by

(2)
$$||f||_{\mathcal{F}_{\alpha}} = \inf\{||\mu||\}$$

where μ varies over all measures in \mathcal{M} for which (1) holds and where $\|\mu\|$ denotes the total variation norm of μ . For $\alpha=0$, let \mathcal{F}_0 denote the family of functions f having the property that there exists a measure $\mu \in \mathcal{M}$ such that

(3)
$$f(z) = f(0) + \int_{\Gamma} \log \frac{1}{(1 - \bar{x}z)} d\mu(x)$$

Received by the editors on August 17, 1995. 1991 AMS Mathematical Subject Classification. Primary 30E20, Secondary

Key words and phrases. Multipliers, fractional Cauchy transform.