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RESONANCE FOR QUASILINEAR ELLIPTIC
HIGHER ORDER PARTIAL DIFFERENTIAL EQUATIONS

AT THE FIRST EIGENVALUE

MARTHA CONTRERAS

1. Introduction. In this paper the author presents a resonance
result on the Sobolev space Wm,p(Ω) where Ω is a bounded open
connected subset of RN meeting the cone property. We let 1 <
p < ∞ and Qu be the 2mth order quasilinear differential operator
in generalized divergence form

(1.1) Qu =
∑

1≤|α|≤m

(−1)|α|DαAα(x, ξm(u)),

for u ∈ Wm,p, where ξm = {Dαu : 0 ≤ |α| ≤ m}, and we make
standard assumptions on Aα such as Carathéodory, uniform ellipticity,
monotonicity, and a growth restriction. We shall study an equation of
the following nature,

(1.2) Qu(x) = g(x, u(x)) + h(x), for u ∈ Wm,p(Ω),

where h(x) ∈ Lp′
(Ω), p′ = p/(p − 1) and g(x, t) : Ω × R → R is

Carathéodory. Subject to mp > N , we show the existence of a solution
to (1.2) with g having superlinear growth in u but subject to a one-
sided growth condition. Since Q lacks an α = 0 order term, problem
(1.2) is considered at resonance since Qu = λ1u is solved by λ1 = 0 and
u = constant, where λ1 is defined as the first eigenvalue of Q. Shapiro
[9, p. 365] provides a detailed explanation of this. This result primarily
differs from that of Shapiro [9] in that our one-sided growth assumption
on g is different from his, and since we approached the first eigenvalue
of Q from values bigger than λ1 = 0, in order for our results to hold, our
Landesman-Lazer conditions must have reversed inequalities from those
of Shapiro’s theorem [9, p. 365]. Thus the theorem we will establish in
this paper holds for a distinct class of functions that those meeting the
hypothesis of Shapiro’s Theorem 1. Examples meeting our conditions
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