TORAL ARRANGEMENTS AND HYPERPLANE ARRANGEMENTS

J. MATTHEW DOUGLASS

ABSTRACT. We consider pairs, (T, \mathcal{A}) , where T is a torus and \mathcal{A} is a finite set of characters of T. Then $d\mathcal{A} = \{\ker(d\mathcal{X}) \mid \mathcal{X} \in \mathcal{A}\}$ is a finite set of hyperplanes in the Lie algebra of T. Let \mathcal{O}_T be the coordinate ring of T, and $\mathcal{O}_{T,e}$ the local ring of the identity in T. In analogy with hyperplane arrangements, put $y = \prod_i (\chi_{i-1})$, and consider the set, $D(\mathcal{A})$, of derivations, θ , of \mathcal{O}_T that satisfy $\theta(y) \in \mathcal{Y}_T$. The main results are that the localization of $D(\mathcal{A})$ at the identity of T is a free $\mathcal{O}_{T,e}$ -module if and only if $d\mathcal{A}$ is a free hyperplane arrangement, and that if this is the case, then the exponents of $d\mathcal{A}$ can be recovered from \mathcal{A} .

1. Introduction. Let k be an algebraically closed field of characteristic zero. In analogy with the definition of a hyperplane arrangement, we will define a toral arrangement to be a pair, (T, A), where T is a torus defined over k and $A = \{\chi_1, \ldots, \chi_s\}$ is a finite set of characters of T. Let t be the Lie algebra of T. Then if χ is a character of T, its derivative $d\chi$ is a linear functional on t. Let dA be the multiset of hyperplanes $\{\ker(d\chi_1), \ldots, \ker(d\chi_s)\}$. Then the distinct hyperplanes in dA form a central hyperplane arrangement in t. In this way, a central hyperplane arrangement is canonically associated with each toral arrangement.

Define $y = \prod_{i=1}^{s} (\chi_i - 1)$ in \mathcal{O}_T and $y' = \prod_{i=1}^{s} d\chi_i$ in \mathcal{O}_t . Let $\operatorname{Der}_k(\mathcal{O}_T)$ and $\operatorname{Der}_k(\mathcal{O}_t)$ be the modules of k-linear derivations of \mathcal{O}_T and \mathcal{O}_t , respectively. Then $D(d\mathcal{A})$ is defined to be $\{\theta \in \operatorname{Der}_k(\mathcal{O}_t) \mid \theta(y') \in y'\mathcal{O}_t\}$, and $d\mathcal{A}$ is said to be free if $D(d\mathcal{A})$ is a free \mathcal{O}_t -module. Terao [7, Theorem 2.5] has shown, using the homogeneity of y', that $D(d\mathcal{A})$ is a free \mathcal{O}_t -module if and only if its localization at \mathfrak{m}_0 is a free $\mathcal{O}_{t,0}$ -module. Notice that we have modified the standard definitions slightly, see [6], since the linear functions $\{d\chi_j \mid 1 \leq j \leq s\}$ are not necessarily distinct. It will be shown in Section 2, after Corollary 2.5, that our definition of $D(d\mathcal{A})$ gives the same \mathcal{O}_t -module as the

Received by the editors on November 7, 1994, and in revised form on December 11, 1996.