RELATIONSHIPS AMONG THE FIRST VARIATION, THE CONVOLUTION PRODUCT, AND THE FOURIER-FEYNMAN TRANSFORM

CHULL PARK, DAVID SKOUG AND DAVID STORVICK

Abstract

In this paper we examine the various relationships that exist among the first variation, the FourierFeynman transform, and the convolution product for functionals on Wiener space that belong to a Banach algebra \mathcal{S}.

1. Introduction. Let $C_{0}[0, T]$ denote one-parameter Wiener space; that is the space of \mathbf{R}-valued continuous functions on $[0, T]$ with $x(0)=0$. The concept of an L_{1} analytic Fourier-Feynman transform was introduced by Brue in [1]. In [3], Cameron and Storvick introduced an L_{2} analytic Fourier-Feynman transform. In [12], Johnson and Skoug developed an L_{p} analytic Fourier-Feynman transform theory for $1 \leq p \leq 2$ which extended the results in $[\mathbf{1}, \mathbf{3}]$ and gave various relationships between the L_{1} and L_{2} theories. In [9], Huffman, Park and Skoug defined a convolution product for functionals on Wiener space and in $[\mathbf{9}, \mathbf{1 0}, \mathbf{1 1}]$ obtained various results involving the FourierFeynman transform and the convolution product.

The class of functionals on $C_{0}[0, T]$ that we work with throughout this paper is the Banach algebra \mathcal{S} introduced by Cameron and Storvick in [4]. Results in $[\mathbf{7}, \mathbf{8}, \mathbf{1 4}, \mathbf{1 5}]$ show that \mathcal{S} contains many broad subclasses of functionals of interest in connection with Feynman integration theory and quantum mechanics.
In Section 3 of this paper we examine all relationships involving exactly two of the three concepts of "transform," "convolution product" and "first variation" of functionals in \mathcal{S}. In Section 4, we examine all relationships involving all three of these concepts where each concept is used exactly once. Study of these relationships yields many interesting formulas; see, for example, equations (3.7), (3.9), (4.1), (4.3) and (4.7).
2. Definitions and preliminaries. Let \mathcal{M} denote the class of all Wiener measurable subsets of $C_{0}[0, T]$, and let m denote Wiener

[^0]
[^0]: Received by the editors in accepted form on January 8, 1997.

