AN INTRODUCTION TO ZARISKI SPACES OVER ZARISKI TOPOLOGIES

R.L. MCCASLAND, M.E. MOORE AND P.F. SMITH

Abstract

Given a topology Ω on a set X, we consider a structure (Y, Γ) such that the relationship between (Y, Γ) and (X, Ω) is similar to the relationship between a module and its ring of scalars. Indeed, this structure is a module analogue of the Zariski topology on the prime spectrum of a ring R in that its construction uses the prime submodules of an R module M in essentially the same way that the construction of the Zariski topology uses the prime ideals of R. It is shown that an R-module homomorphism f between two R modules induces in a natural way a homomorphism between their associated structures, and in case f is an epimorphism, the induced homomorphism is continuous in nontrivial cases.

1. Zariski spaces. Throughout this paper R denotes a commutative ring with identity and M a unital R-module. If I is an ideal of R, we write $I \triangleleft R$, and $A \leq M$ means that A is a submodule of M. If $A \leq M$, then $(A: M)$ represents the ideal $\{r \in R: r M \subseteq A\}$.

A submodule P of M is called prime if P is proper, and whenever $r m \in P, r \in R$ and $m \in M$, then $m \in P$ or $r \in(P: M)$. The collection of all prime submodules of M is denoted by spec M. If A is a submodule of M, then the radical of A, denoted $\operatorname{rad} A$, is the intersection of all prime submodules of M which contain A, unless no such primes exist, in which case $\operatorname{rad} A=M$. In fact, there exist modules M with no prime submodules at all, though any such module M could not be finitely generated. Such modules are called primeless. Studies of prime submodules can be found in $[\mathbf{1}, \mathbf{3}, \mathbf{5}]$ and $[\mathbf{7}-\mathbf{1 2}]$, among others. In particular, one can find the following, easily proven but useful, result in [5] or [7].

Lemma 1. Let P be a (proper) submodule of M. Then P is prime in M if and only if $(P: M)$ is prime in R and M / P is a torsion-free $R /(P: M)$-module.

[^0]
[^0]: Received by the editors on June 6, 1995, and in revised form on November 12, 1996.

