AN INTRODUCTION TO ZARISKI SPACES OVER ZARISKI TOPOLOGIES

R.L. MCCASLAND, M.E. MOORE AND P.F. SMITH

ABSTRACT. Given a topology Ω on a set X, we consider a structure (Y,Γ) such that the relationship between (Y,Γ) and (X,Ω) is similar to the relationship between a module and its ring of scalars. Indeed, this structure is a module analogue of the Zariski topology on the prime spectrum of a ring R in that its construction uses the prime submodules of an R-module M in essentially the same way that the construction of the Zariski topology uses the prime ideals of R. It is shown that an R-module homomorphism f between two R-modules induces in a natural way a homomorphism between their associated structures, and in case f is an epimorphism, the induced homomorphism is continuous in nontrivial cases.

1. Zariski spaces. Throughout this paper R denotes a commutative ring with identity and M a unital R-module. If I is an ideal of R, we write $I \triangleleft R$, and $A \leq M$ means that A is a submodule of M. If $A \leq M$, then (A:M) represents the ideal $\{r \in R : rM \subseteq A\}$.

A submodule P of M is called prime if P is proper, and whenever $rm \in P, r \in R$ and $m \in M$, then $m \in P$ or $r \in (P : M)$. The collection of all prime submodules of M is denoted by spec M. If A is a submodule of M, then the radical of A, denoted rad A, is the intersection of all prime submodules of M which contain A, unless no such primes exist, in which case rad A = M. In fact, there exist modules M with no prime submodules at all, though any such module M could not be finitely generated. Such modules are called primeless. Studies of prime submodules can be found in [1, 3, 5] and [7-12], among others. In particular, one can find the following, easily proven but useful, result in [5] or [7].

Lemma 1. Let P be a (proper) submodule of M. Then P is prime in M if and only if (P:M) is prime in R and M/P is a torsion-free R/(P:M)-module.

Received by the editors on June 6, 1995, and in revised form on November 12, 1996.