ROCKY MOUNTAIN JOURNAL OF MATHEMATICS Volume 28, Number 4, Winter 1998

GENERALIZED BERNSTEIN-CHLODOWSKY POLYNOMIALS

A.D. GADJIEV, R.O. EFENDIEV AND E. IBIKLI

ABSTRACT. For given positive integers n and m, the following generalization of Bernstein-Chlodowsky polynomials is studied,

$$B_{n,m}(f,x) = (1 + (m-1)\frac{x}{b_n}) \sum_{k=0}^{[n/m]} f\left(\frac{b_n k}{n - (m-1)k}\right) \\ \cdot C_{n-(m-1)k}^k \left(\frac{x}{b_n}\right)^k \left(1 - \frac{x}{b_n}\right)^{n-mk},$$

where b_n is a sequence of positive numbers such that $\lim_{n\to\infty} b_n$ $=\infty$, $\lim_{n\to\infty}(b_n/n)=0$, $0\leq x\leq b_n$ and [p], as usual, denotes the greatest integer less than p. A theorem about convergence of $B_{n,m}(f,x)$ to f(x) as $n \to \infty$ in weighted space of functions f continuous on positive semiaxis and satisfying the condition $\lim_{x\to\infty} (f(x)/(1+x^2)) = K_f < \infty$ is established.

1. Let $\rho(x) = 1 + x^2$, $-\infty < x < \infty$ and B_{ρ} be the set of all functions f defined on the real axis and satisfying the condition $|f(x)| \leq M_f \rho(x)$ with some constant M_f , depending only on f. By C_{ρ} we denote the subspace of all continuous functions belonging to B_{ρ} . Obviously, we may convert C_ρ and B_ρ into normed linear space by introducing the following ρ -norm

$$||f||_{\rho} = \sup_{x} \frac{|f(x)|}{\rho(x)}.$$

Also, let C^0_ρ be the subspace of all functions $f \in C_\rho$ for which $\lim_{|x|\to\infty} (f(x)/\rho(x))$ exists finitely.

The properties of linear positive operators acting from C_{ρ} to B_{ρ} and the Korovkin type theorems for them have been studied by the first author who has established the following basic theorem, see [3, 4].

Received by the editors on January 29, 1996. Key words and phrases. Linear positive operators, Bernstein-Chlodowsky polynomials, Korovkin theorems, ρ -norm .

Copyright ©1998 Rocky Mountain Mathematics Consortium