DISTAL COMPACTIFICATIONS OF GROUP EXTENSIONS

H.D. JUNGHENN AND P. MILNES

ABSTRACT. Let N and K be topological groups, and let G be a topological group extension of N by K. We show that if N or K is compact then, under suitable conditions, the distal compactification of G is a canonical extension of a group compactification of N by the distal compactification of K. An analogous result is shown to hold for the universal point distal G-flow.

1. Introduction. Let N and K be groups with identity e. A group G_0 is an extension of N by K if there exists a short exact sequence

$$e \longrightarrow N \longrightarrow G_0 \longrightarrow K \longrightarrow e$$
.

A result of Schreier [12] asserts that G_0 is canonically isomorphic to $G := N \times K$ with multiplication in G given by

(1)
$$(s,t)(s',t') = (st(s')[t,t'], tt'), \quad s,s' \in N, t,t' \in K,$$

where the mappings $(t, t') \mapsto [t, t'] : K \times K \to N$ and $t \mapsto t(\cdot) : K \to N$ Aut(N) satisfy the Schreier extension formulation conditions

$$\begin{cases} e(s) = s \quad \text{and} \quad [t, e] = [e, t] = e, \\ [t, t'](tt')(s) = t(t'(s))[t, t'], \quad \text{and} \\ [t, t'][tt', t''] = t([t', t'']), [t, t't''], \end{cases}$$

see [13]. To indicate this we shall write $G = N \times K$ (SEF).

Now suppose that N and K are topological groups and that the Schreier mappings $[\cdot,\cdot]: K\times K\to N$ and $(s,t)\mapsto t(s): N\times K\to N$

Copyright ©1999 Rocky Mountain Mathematics Consortium

Received by the editors on August 12, 1997, and in revised form on January 20,

¹⁹⁹¹ AMS Mathematics Subject Classification. 43A60, 22D05.

Key words and phrases. Group extension, semi-direct product, topological group, right topological group compactification, left norm continuous, distal, point distal, Furstenberg structure.

This research was supported in part by NSERC grant A7857.