EMBEDDING DERIVATIVES OF \mathcal{M} -HARMONIC FUNCTIONS INTO L^p SPACES

MILOŠ ARSENOVIĆ

ABSTRACT. A characterization is given of those Borel measures μ on B, the unit ball in C^n , such that differentiation of order m maps the \mathcal{M} -harmonic Hardy space \mathcal{H}^p boundedly into $L^q(\mu)$, $0 < q < p < +\infty$.

1. Introduction. Let B denote the unit ball in C^n , $n \geq 1$, and m the 2n-dimensional Lebesgue measure on B normalized so that m(B) = 1, while σ is the normalized surface measure on its boundary S. We set $d\tau(z) = (1 - |z|^2)^{-1-n} dm(z)$. For the most part, we will follow the notation and terminology of Rudin [10]. If $\alpha > 0$ and $\xi \in S$, the corresponding Koranyi approach region is defined by

$$D_{\alpha}(\xi) = \{ z = r\eta \in B : |1 - \langle \eta, \xi \rangle| < \alpha(1 - r) \},$$

those regions are equivalent to the standard approach regions $\{z \in B : |1 - \langle z, \xi \rangle| < 2^{-1}\beta(1 - |z|^2), \beta > 1\}$. For any function u on B we define a scale of maximal functions by

$$M_{\alpha}u(\xi) = \sup\{|u(z)| : z \in D_{\alpha}(\xi)\}.$$

Let $\tilde{\Delta}$ be the invariant Laplacian on B. That is,

$$(\tilde{\Delta}u)(z) = \frac{1}{n+1}\Delta(u \circ \phi_z)(0), \quad u \in C^2(B),$$

where Δ is the ordinary Laplacian and ϕ_z the standard involutive automorphism of B taking 0 to z, see [10]. A function u defined on B is \mathcal{M} -harmonic, $u \in \mathcal{M}$, if $\tilde{\Delta}u = 0$.

For $0 , <math>\mathcal{M}$ -harmonic Hardy space \mathcal{H}^p is defined to be the space of all functions $u \in \mathcal{M}$ such that $M_{\alpha}u \in L^p(\sigma)$ for some $\alpha > 0$, $\|u\|_p = \|M_{\alpha}u\|_p$. This definition is independent of α and the

Received by the editors on April 25, 1996.