A NOTE ON PI INCIDENCE ALGEBRAS

EUGENE SPIEGEL

ABSTRACT. The question when the incidence algebra of a locally finite partially ordered set over a commutative ring with identity is a polynomial identity algebra is discussed. When the incidence algebra is a PI algebra, all its minimal degree, linear, homogeneous identities are determined.

Let R be a commutative ring with identity and $R[X_1,X_2,\dots]$ the ring of polynomials in the noncommuting indeterminates X_1,X_2,\dots over R. A polynomial of the form $rX_{i_1}^{e_1}X_{i_2}^{e_2}\cdots X_{i_n}^{e_n}$, with $r\in R$, i_j a positive integer and e_j a nonnegative integer for $j=1,2,\dots,n$, and $i_j\neq i_{j+1}$ for $j=1,2,\dots,n-1$, is called a monomial. It has coefficient r and degree $\sum_{j=1}^n e_j$. An element $f\in R[X_1,X_2,\dots]$ is called a polynomial. It is the sum of monomials and has degree, deg (f), the maximal degree of the monomials in f. If all monomials in f have the same degree, then f is a homogeneous polynomial. If none of the indeterminates X_i for i>n appear in any monomial of f, we write $f=f(X_1,X_2,\dots,X_n)$. If f is an algebra over f, we write f is substituted for f is substituted for f is substituted for f in f in f in f in f is substituted for f in f in f in f in f in f in f is substituted for f in f is substituted for f in f i

If A is an algebra over R, a nonzero polynomial $f = f(X_1, X_2, \ldots, X_n) \in R[X_1, X_2, \ldots]$ is an identity for A if for every $\alpha_1, \alpha_2, \ldots, \alpha_n \in A$ we have $f(\alpha_1, \alpha_2, \ldots, \alpha_n) = 0$. If, in addition, a monomial of f of highest degree has coefficient the identity of R, then f is a polynomial identity for A. The algebra A is a polynomial identity algebra, PI algebra, if A has a polynomial identity. If f is a polynomial identity for A, then from a result of Kaplansky [4], A satisfies a homogeneous polynomial identity of the form $X_1X_2\cdots X_n+p$, where p is the sum of monomials of the form $r_{\sigma}X_{\sigma(1)}X_{\sigma(2)}\cdots X_{\sigma(n)}$, with $r_{\sigma}\in R$, σ a nonidentity element of the symmetric group S_n , and $n\leq \deg(f)$. The polynomial $s(X_1, X_2, \ldots, X_n) = \sum_{\sigma\in S_n} \operatorname{sgn}(\sigma)X_{\sigma(1)}X_{\sigma(2)}\cdots X_{\sigma(n)}$ is called the standard polynomial of degree n. Here $\operatorname{sgn}(\sigma)$ denotes the sign of σ . The famous Amitsur-Levitzki theorem [1] tells us that

Received by the editors on November 1, 1995, and in revised form on July 8, 1997.