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SPHERICAL ISOMETRIES ARE HYPOREFLEXIVE
VLADIMIR MULLER AND MAREK PTAK

ABSTRACT. The result from the title is shown.

Let L(H) denote the algebra of all bounded linear operators on a
complex Hilbert space, H. If M C L(H), then we denote by M’ the
commutant of M, M' = {S € L(H) : TS = ST for every T € M}.
The second commutant is denoted by M"” = (M')’. Denote further
by W(M) the smallest weakly closed subalgebra of L(H) containing
M and by AlgLat M the algebra of all operators leaving invariant all
subspaces which are invariant for all operators from M. Recall that
M is said to be reflexive if W(M) = AlgLat M. For a commutative
set M, there is also a weaker version of the reflexivity: M is called

hyporeflexive if W(M) = AlgLat M N M.

Reflexivity and hyporeflexivity have been studied intensely by many
authors. Deddens in [3] proved the reflexivity of a single isometry. The
result was extended to sets of commuting isometries in [2], see also [6].

An analogy and, in some sense, a generalization of commuting N-
tuples of isometries are spherical isometries. A spherical isometry is
an N-tuple T' = (T1,... ,Tn) of mutually commuting operators on H
satisfying 7Ty + -+ + TNTn = In.

The reflexivity of doubly commuting spherical isometries was men-
tioned in [7]. The aim of the paper is to show the hyporeflexivity of
spherical isometries.

If 1 is a positive Borel measure on the unit sphere
OBy = {(21,.-,28) €CN |51 > + - + |2n|* = 1},

then denote by H?(u) the closure of polynomials in L?(p). We start
with the following
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