QUOTIENT NEARRINGS OF SEMILINEAR NEARRINGS

K.D. MAGILL, JR.

1. Introduction. All nearrings in this paper will be right nearrings. Let \mathbb{R}^n denote the n-dimensional Euclidean group. In [1], we showed that if λ is a continuous map from \mathbb{R}^n to \mathbb{R} and a multiplication *is defined on \mathbb{R}^n by $v*w=\lambda(w)v$, then $(\mathbb{R}^n,+,*)$ is a topological nearring if and only if $\lambda(av) = a\lambda(v)$ for all $v \in \mathbb{R}^n$ and $a \in \operatorname{Ran}(\lambda)$ where Ran (λ) denotes the range of λ . Any map from \mathbb{R}^n to \mathbb{R} with this property will be referred to as a semilinear map. Such maps are quite abundant. For example, let P be any homogeneous polynomial of degree m. That is, $P(tv_1, tv_2, \dots, tv_n) = t^m P(v_1, v_2, \dots, v_n)$ for all $t \in R$ and all $v \in R^n$. Define $\lambda(v) = |P(v)|^{1/m}$. Then λ is a semilinear map. If m is odd, one can also obtain a semilinear map λ by defining $\lambda(v) = (P(v))^{1/n}$. By a semilinear nearring, we mean a topological nearring $(R^n, +, *)$ where the multiplication * is induced by a semilinear map λ , and we will denote such a nearring by $N_{\lambda}(\mathbb{R}^n)$. In [1], we determined all the ideals (here, ideal means two-sided ideal) of a semilinear nearring. In this paper we show that every nonzero quotient nearring of a semilinear nearring is isomorphic to a semilinear nearring, and we determine precisely when two quotient nearrings of $N_{\lambda}(\mathbb{R}^n)$ are isomorphic. Among other things, we will see that, although $N_{\lambda}(\mathbb{R}^n)$ may have infinitely many quotient nearrings, it has, up to isomorphism, only finitely many and, in fact, this number cannot exceed n+1.

2. The results. Let $N_{\lambda}(R^n)$ be a semilinear nearring, and let (2.1) $C(\lambda) = \{w \in R^n : \lambda(v + aw) = \lambda(v) \text{ for all } a \in R \text{ and all } v \in R^n\}.$

In [1], we proved the following

Theorem 2.1. Let λ be any nonconstant semilinear map from \mathbb{R}^n to \mathbb{R} . Then $C(\lambda) \subseteq \lambda^{-1}(0)$, $C(\lambda)$ is a linear subspace of \mathbb{R}^n and the

Received by the editors on August 5, 1996, and in revised form on July 1, 1997.

Copyright ©1999 Rocky Mountain Mathematics Consortium