ON THE ESSENTIAL SPECTRA OF REGULARLY SOLVABLE OPERATORS IN THE DIRECT SUM SPACES

SOBHY EL-SAYED IBRAHIM

Abstract

The problem of investigation of the spectral properties of the operators which are regularly solvable with respect to minimal operators $T_{0}\left(M_{p}\right)$ and $T_{0}\left(M_{p}^{+}\right)$generated by a general quasi-differential expression M_{p} and its formal adjoint M_{p}^{+}on any finite number of intervals $I_{p}=\left(a_{p}, b_{p}\right)$, $p=1, \ldots, N$, are studied in the setting of the direct sums of $L_{w p}^{2}\left(a_{p}, b_{p}\right)$-spaces of functions defined on each of the separate intervals. These results extend those of formally symmetric expression M studied in [1] and [15] in the single-interval case, and also extend those proved in $[\mathbf{1 0}]$ and $[\mathbf{1 3}]$ in the general case.

1. Introduction. Akhiezer and Glazman [1] and Naimark [15] showed that the self-adjoint extensions of the minimal operator $T_{0}(M)$ generated by a formally symmetric differential expression M with maximal deficiency indices have resolvents which are Hilbert-Schmidt integral operators and consequently have a wholly discrete spectrum. In [10], Ibrahim extended their results for general ordinary quasidifferential expression M of nth order with complex coefficients in the single-interval case with one singular endpoint.

The minimal operators $T_{0}(M)$ and $T_{0}\left(M^{+}\right)$generated by a general ordinary quasi-differential expression M and its formal adjoint M^{+}, respectively, form an adjoint pair of closed, densely-defined operators in the underlying L_{w}^{2}-space, that is, $T_{0}(M) \subset\left[T_{0}\left(M^{+}\right)\right]^{*}$. The operators which fulfill the role that the self-adjoint and maximal symmetric operators play in the case of a formally symmetric expression M are those which are regularly solvable with respect to $T_{0}(M)$ and $T_{0}\left(M^{+}\right)$. Such an operator S satisfies $T_{0}(M) \subset S \subset\left[T_{0}\left(M^{+}\right)\right]^{*}$ and, for some $\lambda \in \mathbf{C},(S-\lambda I)$ is a Fredholm operator of zero index, this means that S has the desirable Fredholm property that the equation $(S-\lambda I) u=f$ has a solution if and only if f is orthogonal to the solution space of

Received by the editors on October 15, 1995.

