CONSTANT MEAN CURVATURE SURFACES BOUNDED BY A CIRCLE

RAFAEL LÓPEZ

Introduction. The structure of the space of compact constant mean curvature surfaces with prescribed boundary is not known, even in the simplest case: when the boundary is a round circle with, for instance, unit radius. Heinz [4] found that a necessary condition for existence in this situation is that $|H| \leq 1$. The only known examples are the umbilical ones: the flat disc if H=0 and the two spherical caps with radius 1/|H| if $H\neq 0$; and some non-embedded surfaces of genus bigger than two whose existence was proved by Kapouleas in [7].

We shall consider a connected compact surface Σ and $\phi : \Sigma \to \mathbf{R}^3$ an immersion of constant mean curvature H such that $\phi : \partial \Sigma \to \phi(\partial \Sigma)$ is a diffeomorphism. We will say in this situation that Σ is an H-surface with boundary Γ , where $\Gamma = \phi(\partial \Sigma)$.

When the boundary is a circle of radius one, we shall suppose that it is in the z-plane, and we shall denote by S^1 the circle $\{(x,y,0) \in \mathbb{R}^3; x^2 + y^2 = 1\}$. Given $0 < |H| \le 1$, the two spherical caps bounding S^1 are stable, but it is not known if they are the only ones bounded by S^1 . There is no even answer to this question for immersed discs. In [2] it appears the question to find sufficient conditions of stability for a domain. Following ideas of Ruchert [9], Barbosa and do Carmo prove that if Σ is a simply-connected surface immersed in \mathbb{R}^3 with constant mean curvature and $\int_{\Sigma} |\sigma|^2 d\Sigma < 8\pi$, then Σ is stable, where σ denotes the second fundamental form. Also repeated with the problem of stability, Koiso [8] has proved that the spherical caps are the only surfaces with minimum area in the family of surfaces with constant volume and boundary S^1 . In this paper we prove the following result.

Let $\phi: \Sigma \to \mathbf{R}^3$ be an immersion from a compact disc in \mathbf{R}^3 with constant mean curvature and such that $\phi(\partial \Sigma)$ is a circle of radius one. If σ is the second fundamental form and $\int_{\Sigma} |\sigma|^2 d\Sigma \leq 8\pi$, then ϕ is umbilical.

Received by the editors on November 24, 1996. This work has been partially supported by DGICYT Grant No. PB97-9785.