ON THE SECOND HILBERT 2-CLASS FIELD OF REAL QUADRATIC NUMBER FIELDS WITH 2-CLASS GROUP ISOMORPHIC
 TO $\left(2,2^{n}\right), n \geq 2$

ELLIOT BENJAMIN

Abstract

Let k be a real quadratic number field with $C_{k, 2}$, the 2-Sylow subgroup of its ideal class group, isomorphic to $\mathbf{Z} / 2 \mathbf{Z} \times \mathbf{Z} / 2^{n} \mathbf{Z}, n \geq 2$, such that $\operatorname{Gal}\left(k_{2} / k\right)$, the galois group over k of the second Hilbert 2-class field of k, is nonabelian. We describe conditions for which we can further refine $\mathrm{Gal}\left(k_{2} / k\right)$ in terms of its group structure being modular, metacyclic-nonmodular, or nonmetacyclic, when a prime congruent to $3 \bmod 4$ does not divide the discriminant of k.

1. Preliminaries. Let k be a real quadratic number field with $C_{k, 2}$, the 2-Sylow subgroup of its ideal class group, isomorphic to $\mathbf{Z} / 2 \mathbf{Z} \times \mathbf{Z} / 2^{n} \mathbf{Z}, n \geq 2$, which we will denote by $\left(2,2^{n}\right)$. We let k_{1} denote the Hilbert 2 -class field of k, i.e., the maximal unramified (including the infinite primes) abelian field extension of k which has degree a power of 2 . Then $C_{k, 2} \cong \operatorname{Gal}\left(k_{1} / k\right)$, the galois group of k_{1} over k, and we let $k_{2}=\left(k_{1}\right)_{1}$. In our earlier work we have completely determined when $\operatorname{Gal}\left(k_{2} / k\right)$ is abelian, $[\mathbf{1}, \mathbf{2}]$. In certain cases, particularly when a prime congruent to $3 \bmod 4$ divides d_{k}, the discriminant of k, we have utilized information about the capitulation of ideal classes in unramified quadratic extensions of k in order to further classify $\operatorname{Gal}\left(k_{2} / k\right.$ in terms of its group structure being modular, metacyclic-nonmodular, or nonmetacyclic $[\mathbf{1}, \mathbf{2}]$. In the present paper we extend the above classification for nonabelian $\operatorname{Gal}\left(k_{2} / k\right)$ to the remaining cases, i.e., when a prime congruent to 3 mod 4 does not divide the discriminant of k.

Recall that a group G is metacyclic if there exists a normal cyclic subgroup, N, of G such that G / N is also cyclic. Finite metacyclic 2groups, G, for which $G / G^{\prime} \cong\left(2,2^{n}\right), n \geq 2$, can be divided into two isomorphism types: the modular groups, $M_{n+2}(2)$, and those which

[^0]
[^0]: Received by the editors on April 9, 1996, and in revised form on August 19, 1997.

