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THE DENSITY OF PRIMES P, SUCH THAT
—11IS A RESIDUE MODULO P OF TWO
CONSECUTIVE FIBONACCI NUMBERS, IS 2/3

CHRISTIAN BALLOT

ABSTRACT. Given n1,m2 € {£1}, we calculate the exact
proportion of primes p such that 71,72 appear consecutively
as residues of the Fibonacci sequence modulo p.

Introduction. Let 11,72 € {£1}. In this paper we compute the
density of the set of primes p such that 7,72 appear as consecutive
residues of the Fibonacci sequence (F,) modulo p, i.e., such that there
exists n € N : (Fp,, Fry1) = (91,m2) (mod p).

The method used originated with Hasse, but its scope was later
extended by Lagarias, and then Ballot. Let U = (U,),>0 be a linear
recurrence sequence with integral terms and characteristic polynomial
f(X) € Z]X]. Hasse [6] showed that for binary recurrence sequences
U, = a" + 1, a € Z, one could compute the precise density of
primes p such that p divides U, i.e., such that there exists n € N,
p | U,. Lagarias [7] went further by proving that Hasse’s method
applied to some binary linear recurrence sequences whose characteristic
polynomials had irrational roots, in particular, to U, = L,, the
sequence of Lucas numbers. The present author [1] discovered that
one could generalize the method to the computing of densities of
prime divisors of some linear recurrence sequences of arbitrary order
m > 2 as long as one defined division of U to mean p divides m — 1
consecutive terms of the sequence U. (We then say that p is a mazimal
divisor of U.) However, all sequences of order m > 3 to which the
method was applied in the author’s memoir [1] had characteristic
polynomials with rational roots. Here, for the first time, we deal with a
ternary recurrence sequence whose characteristic polynomial, namely
f(X) = (X —1)(X? — X — 1), has some irrational roots. Thus, we
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