THE DENSITY OF PRIMES P, SUCH THAT -1 IS A RESIDUE MODULO P OF TWO CONSECUTIVE FIBONACCI NUMBERS, IS 2/3

CHRISTIAN BALLOT

ABSTRACT. Given $\eta_1, \eta_2 \in \{\pm 1\}$, we calculate the exact proportion of primes p such that η_1, η_2 appear consecutively as residues of the Fibonacci sequence modulo p.

Introduction. Let $\eta_1, \eta_2 \in \{\pm 1\}$. In this paper we compute the density of the set of primes p such that η_1, η_2 appear as consecutive residues of the Fibonacci sequence (F_n) modulo p, i.e., such that there exists $n \in \mathbf{N} : (F_n, F_{n+1}) \equiv (\eta_1, \eta_2) \pmod{p}$.

The method used originated with Hasse, but its scope was later extended by Lagarias, and then Ballot. Let $U=(U_n)_{n>0}$ be a linear recurrence sequence with integral terms and characteristic polynomial $f(X) \in \mathbf{Z}[X]$. Hasse [6] showed that for binary recurrence sequences $U_n = a^n + 1$, $a \in \mathbf{Z}$, one could compute the precise density of primes p such that p divides U, i.e., such that there exists $n \in \mathbf{N}$, $p \mid U_n$. Lagarias [7] went further by proving that Hasse's method applied to some binary linear recurrence sequences whose characteristic polynomials had irrational roots, in particular, to $U_n = L_n$, the sequence of Lucas numbers. The present author [1] discovered that one could generalize the method to the computing of densities of prime divisors of some linear recurrence sequences of arbitrary order $m \geq 2$ as long as one defined division of U to mean p divides m-1consecutive terms of the sequence U. (We then say that p is a maximal divisor of U.) However, all sequences of order $m \geq 3$ to which the method was applied in the author's memoir [1] had characteristic polynomials with rational roots. Here, for the first time, we deal with a ternary recurrence sequence whose characteristic polynomial, namely $f(X) = (X-1)(X^2-X-1)$, has some irrational roots. Thus, we

Received by the editors on July 31, 1997.

¹⁹⁹¹ AMS Mathematics Subject Classification. Primary 11B37, 11B83, 11B05. Secondary 11B39.

Secondary 11B39.

Key words and phrases. Recurrence sequences, density, maximal division, Fibonacci residues.