CONFORMAL IMAGES OF TANGENTIAL AND NONTANGENTIAL ARCS

JOHN AKEROYD

If f is bounded and analytic in $\mathbf{D} := \{z: |z| < 1\}$ and $\lim_{r \to 1^-} f(re^{i\theta})$ exists for some θ , then, by a normal families argument, f(z) approaches that radial limit as z in \mathbf{D} approaches $e^{i\theta}$ along any nontangential path; see [1, Theorem 1.3, p. 6]. In this note we give an analogous result for functions that are analytic and univalent in \mathbf{D} ; with no loss of generality, we let $e^{i\theta} = 1$ throughout. We first observe that, for any function f that is both analytic and univalent in \mathbf{D} , f([0,1)) is rectifiable if and only if $f(\gamma \setminus \{1\})$ is rectifiable for each rectifiable Jordan arc γ contained in $\mathbf{D} \cup \{1\}$ that has a nontangential approach in \mathbf{D} to 1 and that satisfies a certain restriction on its "oscillations" near 1 (Theorem 1). We also show that if γ has a tangential approach in \mathbf{D} to 1, then there is a Jordan region Ω and a conformal mapping φ from \mathbf{D} to Ω such that $\varphi([0,1]) = [0,1]$ and yet $\varphi(\gamma)$ is not rectifiable (Theorem 2); for a related result, see [5].

To establish the terms of our discussion, let γ be a Jordan arc from [0,1] to the complex plane C such that $\gamma([0,1))$ is contained in D and $\gamma(1) = 1$. If the limit as t approaches 1 of $(1 - |\gamma(t)|)/(|1 - \gamma(t)|)$ exists and is zero, then we say that γ has a tangential approach in **D** to 1. And, if there exists $\varepsilon > 0$ such that $\varepsilon \leq (1 - |\gamma(t)|)/(|1 - \gamma(t)|)$ whenever $0 \le t < 1$, then we say that γ has a nontangential approach in **D** to 1. Throughout this paper we let γ denote both the Jordan arc and its trace $\gamma([0,1])$. Let T(z)=(1-z)/(1+z) be the Möbius transformation that maps $\{z : \operatorname{Re}(z) > 0\}$ onto **D**, 0 to 1 and 1 to 0. For each nonnegative integer n, let $a_n = T(2^{-n})$ (= $(2^n - 1)/(2^n + 1)$); notice that $\rho(a_n, a_{n+1}) = (1/3)$ for all n, where $\rho(z, w) := |(z - w)/(1 - \bar{w}z)|$ is the pseudohyperbolic distance between the points z and w in **D**. If γ is a rectifiable Jordan arc in $\mathbf{D} \cup \{1\}$, then, for $n = 0, 1, 2, \ldots$, let $\gamma_n =$ $\{z \in \gamma : a_n \leq |z| < a_{n+1}\}$ and (with the reference to γ understood), let $M_n = \operatorname{length}(\gamma_n)/(a_{n+1} - a_n)$; length $(\gamma_n) := \Lambda_1(\gamma_n)$ —the onedimensional Hausdorff measure of γ_n . For $0 < \varepsilon < 1$ and any

Received by the editors on April 25, 1997, and in revised form on July 31, 1997.