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QUOTIENT MAPS WITH STRUCTURE
PRESERVING INVERSES

M. ZIPPIN

ABSTRACT. It is proved that certain quotient maps g :
(Zn Un)i; — Y, where U, are finite dimensional spaces,
have the following property: If E is a subspace of Y with
a “good” structure of uniformly complemented finite dimen-
sional subspaces, so is the subspace ¢~ 1(E) of (Zn Un)i,- In
particular, any quotient map g : Iy — L1 has this property.

1. Introduction. Let ¢ : U — Y be a quotient map. In general,
very little is known about the connection between a subspace F of Y
and the subspace ¢~!(E) of U. In this note we discuss a quotient map g,
the inverse of which preserves the 7 property and the finite dimensional
decomposition property. Recall that a space F is said to be a ) space,
A > 1, if there exist a sequence {E,, }22 ; of finite dimensional subspaces
of E, with By C E; C .-+ and US2,E, = E, and a sequence of
projections {P,}52; of E onto E, with sup, [|P,|| = A < o©. E is
said to be a 7 space (or, to have the 7 property) if it is a 7 space
for some A > 1. The pair of sequences ({E,}>2,,{P,}52,) will be
called a 7 structure of E. If E has a m structure ({E,}52 1, {Pn}32)
and, for every n,k > 1, P,Py = PP, = Pyin(k,n), then the sequence
{(P,—Pn_1)(E)}2, is called a finite dimensional decomposition of E,
f.d.d. for short, and FE is said to have the f.d.d. property.

Our main result is the following

Theorem. Let Y be a wy space with a wx structure ({Y,}22,,
{Qn}y), and let U = (307 Yy)i,. For each n > 1, let U, denote

the subspace {(0,...,0,y4,0,...) € U :y € Y,}, and denote by 7, the
——

n—1
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