RANK 2 VECTOR BUNDLES IN A NEIGHBORHOOD OF AN EXCEPTIONAL CURVE OF A SMOOTH SURFACE

E. BALLICO

ABSTRACT. Let $D\cong \mathbf{P}^1$ be an exceptional divisor on the smooth surface W and U the formal neighborhood of D in W. Let E be a rank 2 vector bundle on U. Here we associate to E an integer $t\geq 1$, a finite family $E_i, 1\leq i\leq t$, of rank 2 vector bundles on U and a finite sequence $\{(a_i,b_i)\}_{1\leq i\leq t}$ of pairs of integers such that $E_i|D$ has splitting type $(a_i,b_i), \ E_1=E, a_t=b_t, \ a_{i+1}+b_{i+1}=a_1+b_1+i$ and $b_i< b_{i+1}\leq a_{i+1}\leq a_i$ for $2\leq i\leq t$. Vice versa, for any such sequence we prove the existence of at least one such bundle. We compute the second Chern class of E in terms of $\{(a_i,b_i)\}_{1\leq i\leq t}$ and show that $\mathbf{O}_U(-a_1D)\oplus \mathbf{O}_U(-b_1D)$ is the unique bundle with splitting type (a_1,b_1) and maximal c_2 .

0. Introduction. Let W be either a smooth connected quasiprojective surface defined over an algebraically closed field or a smooth connected two-dimensional manifold. We assume that W contains an exceptional divisor D, i.e., a smooth curve $D \cong \mathbf{P}^1$ with $\mathbf{O}_D(-1)$ as a normal bundle. Let U be either the formal completion of W along D or, if we work over \mathbf{C} , a small tubular neighborhood of D in W for the Euclidean topology. Let \mathbf{I} be the ideal sheaf of D in U. Let E be a rank two vector bundle on U and (a,b) be the splitting type of U|D, i.e., let a,b be the integers with $a \geq b$ and such that $E|D \cong \mathbf{O}_D(a) \oplus \mathbf{O}_D(b)$. In the introduction of this paper we will associate to E an integer $t \geq 1$ and a finite sequence $\{(a_i,b_i)\}_{1\leq i\leq t}$ of pairs of integers with $a_1=a$, $b_1=b$, $a_t=b_t=(a+b+t-1)/2$ and a finite number of bundles E_i , $1\leq i\leq t$, with $E_1=E$, $E_i|D$ with splitting type (a_i,b_i) .

Remark 0.1. It is well known and easy to check that if E|D is trivial, then E is trivial. Furthermore, if W is quasi-projective, E|D is trivial and $E\cong F|U$ with F algebraic vector bundle on W, then there exists a Zariski open neighborhood V of D with $F|V\cong \mathbf{O}_{V}^{\oplus 2}$ (use for

Received by the editors on April 21, 1998, and in revised form on June 24, 1998. The author was partially supported by MURST and GNSAGA of CNR (Italy).