u-INDEPENDENCE AND QUADRATIC u-INDEPENDENCE IN THE CONSTRUCTION OF INDECOMPOSABLE FINITELY GENERATED MODULES

PAOLO ZANARDO

Abstract

Let R be a valuation domain having an ideal I such that a maximal immediate extension S of R contains four units u-independent over I. We construct a 4 -generated indecomposable R-module M with Goldie dimension $g(M)=$ 2. We thus supplement a result by Lunsford who constructed indecomposable finitely generated R-modules making use of sets of quadratically u-independent elements of S.

1. Introduction. Let R be a valuation domain, and let S be a fixed maximal immediate extension of R. There is a somewhat standard way to define finitely generated R-modules M by generators and relations, relating M to a set of units u_{1}, \ldots, u_{n} of S. Starting with [5] and [8], an extensive use of this idea was made. See also the books by Fuchs and Salce [2, Chapter 9] and [3, Chapter 5]. The notion of u-independence of units u_{1}, \ldots, u_{n} of S over an ideal I of R was introduced in $[\mathbf{8}]$ and investigated further in [9]. It was used to show the existence of indecomposable finitely generated R-modules M (related with u_{1}, \ldots, u_{n}) with minimal number of generators $l(M)=n+1$ and Goldie dimension $g(M)=n$. This solved the problem of finding indecomposable finitely generated R-modules with Goldie dimension greater than one. However, it is worth noting that the argument developed in [8] worked only in the case when $l(M)=g(M)+1$.

Lunsford [4] in 1995 gave a natural generalization of u-independence, defining quadratic u-independence of units u_{1}, \ldots, u_{n} of S over an ideal I. Starting with a sufficiently large set of units of S, for any pair of positive integers h, k he defined by generators and relations an R module M with $l(M)=h+k$ and $g(M)=h$. Actually this type of module had already been introduced in 1987 by Salce and Zanardo [7]. Using quadratic u-independence, Lunsford was able to prove that such

[^0]
[^0]: 1991 AMS Mathematics Subject Classification. Primary 16L99, 16S15.
 Research supported by MURST, COFİN 2000.
 Received by the editors on July 13, 2001, and in revised form on November 6, 2001.

