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u-INDEPENDENCE AND QUADRATIC u-INDEPENDENCE
IN THE CONSTRUCTION OF INDECOMPOSABLE

FINITELY GENERATED MODULES

PAOLO ZANARDO

ABSTRACT. Let R be a valuation domain having an ideal
I such that a maximal immediate extension S of R contains
four units u-independent over I. We construct a 4-generated
indecomposable R-module M with Goldie dimension g(M) =
2. We thus supplement a result by Lunsford who constructed
indecomposable finitely generated R-modules making use of
sets of quadratically u-independent elements of S.

1. Introduction. Let R be a valuation domain, and let S be a fixed
maximal immediate extension of R. There is a somewhat standard way
to define finitely generated R-modules M by generators and relations,
relating M to a set of units u1, . . . , un of S. Starting with [5] and
[8], an extensive use of this idea was made. See also the books by
Fuchs and Salce [2, Chapter 9] and [3, Chapter 5]. The notion of
u-independence of units u1, . . . , un of S over an ideal I of R was
introduced in [8] and investigated further in [9]. It was used to show the
existence of indecomposable finitely generated R-modules M (related
with u1, . . . , un) with minimal number of generators l(M) = n + 1
and Goldie dimension g(M) = n. This solved the problem of finding
indecomposable finitely generated R-modules with Goldie dimension
greater than one. However, it is worth noting that the argument
developed in [8] worked only in the case when l(M) = g(M) + 1.

Lunsford [4] in 1995 gave a natural generalization of u-independence,
defining quadratic u-independence of units u1, . . . , un of S over an ideal
I. Starting with a sufficiently large set of units of S, for any pair
of positive integers h, k he defined by generators and relations an R-
module M with l(M) = h + k and g(M) = h. Actually this type of
module had already been introduced in 1987 by Salce and Zanardo [7].
Using quadratic u-independence, Lunsford was able to prove that such
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