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ABSTRACT. As is the case with Abelian groups, rank-1,
torsion-free Kronecker modules are characterized by height
functions. A height function is called singular provided it
never assumes the value infinity. The endomorphism algebras
of singular, rank-1, torsion-free Kronecker modules are trivial.
Here we consider the endomorphism algebras of torsion-free,
rank-2 modules that are extensions of finite-dimensional mod-
ules by modules of rank-1. If K is the ground field and K(X)
the field of rational functions, the endomorphism algebras of
the rank-2, indecomposable modules are known to be commu-
tative K-subalgebras of the matrix ring M2(K(X)). When the
height function is nonsingular the resulting endomorphism al-
gebras can be varied, including, for example, coordinate rings
of elliptic curves. This paper examines the possibilities for the
singular case, which we show are more limited. Yet their en-
domorphism algebras offer examples from an important class
of commutative rings, namely, zero-dimension, local rings.

1. Introduction. For an algebraically closed field K, a function
h : K ∪ {∞} → {∞, 0, 1, . . . } is called a height function. Height
functions are just as pervasive in the theory of Kronecker modules as
they are in the theory of abelian groups [4, 7]. Every K[X]-module
may be considered a Kronecker module, see [5]. The concepts used
in Abelian groups have seen fruitful extension to Kronecker modules.
In turn, Kronecker modules have helped guide the development of the
general representation theory of finite-dimensional algebras, posets and
indirectly Abelian groups, see, e.g., [1, 2, 8, 9, 14].

The Kronecker modules that are torsion-free extensions of finite-
dimensional, rank-1 modules by infinite-dimensional, rank-1 modules
have no analogue in K[X]-module theory. These modules, which are
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