ISOMORPHISM CLASSES OF UNIFORM GROUPS

MICHAEL NAHLER

ABSTRACT. In this paper we count isomorphism classes of uniform groups within a fixed near-isomorphism class.

1. Preliminaries. An almost completely decomposable group X is an extension of a completely decomposable group R by a finite group X/R. If $\exp(X/R) = h$, denote $\bar{} : R \to \overline{R} = h^{-1}R/R$, $x \mapsto \bar{x} = h^{-1}x + R$ the natural epimorphism. Furthermore, $\bar{}$ denotes also the induced homomorphism $\bar{} : \operatorname{Aut} R \to \operatorname{Aut} \overline{R}$, $\alpha \mapsto \bar{\alpha}$, which is well defined by $\bar{\alpha}(\bar{x}) := \overline{\alpha(x)}$. Recall, cf. [6], that

$$\operatorname{Typ}\operatorname{Aut}\overline{R}=\{\xi\in\operatorname{Aut}\overline{R}\mid\forall_{\tau\in T_{\operatorname{cr}}(R)}\xi\overline{R(\tau)}=\overline{R(\tau)}\}$$

is the set of type automorphisms of \overline{R} . Let $R = \bigoplus_{j=1}^n \langle x_j \rangle_*^R$, where $\mathbf{x} = (x_1, \dots, x_n)$ is an h-decomposition basis, i.e., $\operatorname{hgt}_p^R(x_j) \in \{0, \infty\}$ for all j and all primes p dividing h. Then $\bar{\mathbf{x}} = (\bar{x}_1, \dots, \bar{x}_n)$ is called an induced decomposition basis of $h^{-1}R/R$. We write $\mathbf{Z}_h := \mathbf{Z}/h\mathbf{Z}$. Let $\mathbf{a} = (a_1, \dots, a_r)$ be a basis of $X/R \subseteq h^{-1}R/R$. Then the basis elements a_i may be written as linear combinations of the induced decomposition basis $a_i = \sum_{j=1}^n \alpha_{ij}\bar{x}_j$, for $i = 1, \dots, r$, where $\alpha_{ij} \in \mathbf{Z}_h$. The $(r \times n)$ -matrix $M = (\alpha_{ij})_{i=1,\dots,r} \in \mathbf{M}^{r \times n}(\mathbf{Z}_h)$ is called representing matrix of X over R relative to \mathbf{a} and $\bar{\mathbf{x}}$.

A group X is called p-local for a prime p if the regulator quotient X/R(X) is a (finite) p-group.

Definition 1.1. Let p be a prime and e, n, r natural numbers. Let $T = (\tau_1, \ldots, \tau_n)$ be an ordered n-tuple of pairwise incomparable types, where $\tau_i(p) \neq \infty$ each i. Then $\mathcal{C}(T, p, e, r)$ denotes the class of almost completely decomposable groups X such that

(1) $T = T_{cr}(X)$ is the critical typeset of X,

¹⁹⁹¹ AMS Mathematics Subject Classification. Primary 20K15. Received by the editors on July 23, 2001, and in revised form on September 27, 2001.