ROCKY MOUNTAIN JOURNAL OF MATHEMATICS Volume 32, Number 4, Winter 2002

LOCALLY INJECTIVE MODULES AND LOCALLY PROJECTIVE MODULES

FRIEDRICH KASCH

ABSTRACT. Our dual notions "locally injective" and "locally projective" modules in Mod-R are good tools to study the relations between the singular, respectively cosingular, submodule of Hom $_R(M, W)$ and the total Tot (M, W). These notions have further interesting properties.

1. Introduction. For a ring R with $1 \in R$ we denote by Mod-R the category of all unitary R-right modules. If A is a submodule of the module M, then $A \subseteq^0 M$, respectively $A \subseteq^* M$, denotes that A is a small, or superfluous, respectively a large or essential, submodule of M. Further $A \subseteq^{\oplus} M$ means that A is a direct summand of M. We have to use the following fundamental lemma.

Lemma 1.1. For $f \in \text{Hom}_R(W, M)$ the following conditions are equivalent

(i) There exists $g \in \text{Hom}_R(W, M)$ such that $e := gf = e^2 \neq 0$ (e is an idempotent in End (M)).

(ii) There exists $h \in \text{Hom}_R(W, M)$ such that $d := fh = d^2 \neq 0$ (d is an idempotent in End (W)).

(iii) There exist direct summands $0 \neq A \subseteq^{\oplus} M$, $B \subseteq^{\oplus} W$, such that the mapping $A \ni a \mapsto f(a) \in B$ is an isomorphism.

For the proof, and for the proof of the following lemma, see [4]. If the conditions of the lemma are satisfied for f, we say that f is *partially invertible* (abbreviated 'pi'). The *total* of M, W, denoted by

¹⁹⁹¹ AMS *Mathematics Subject Classification*. Primary 16D50, 16D40. Received by the editors on August 7, 2001, and in revised form on October 29,

^{2001.}When I gave the talk at the Honolulu Conference I did not know that the notation
"locally projective" was already used by Birge Zimmermann in her paper, Pure submodules of direct products of free modules, Math. Ann. 224 (1976), 233-245. I regret this very much and hope that this remark will help to avoid confusion.

Copyright ©2002 Rocky Mountain Mathematics Consortium