ON KERVAIRE AND MURTHY'S CONJECTURE

OLA HELENIUS AND ALEXANDER STOLIN

Abstract

Let p be a semi-regular prime, let $C_{p^{n}}$ be a cyclic group of order p^{n} and let ζ_{n} be a primitive p^{n+1} th root of unity. There is a short exact sequence $$
0 \rightarrow V_{n}^{+} \oplus V_{n}^{-} \rightarrow \operatorname{Pic} \mathbf{Z} C_{p^{n+1}} \rightarrow \mathrm{Cl} \mathbf{Q}\left(\zeta_{n}\right)+\operatorname{Pic} \mathbf{Z} C_{p^{n}} \rightarrow 0
$$

In 1977 Kervaire and Murthy established an exact structure for V_{n}^{-}, proved that $\operatorname{Char}\left(V_{n}^{+}\right) \subseteq \operatorname{Char}\left(\mathcal{V}_{n}^{+}\right) \subseteq \mathrm{Cl}^{(p)}\left(\mathbf{Q}\left(\zeta_{n-1}\right)\right)$, where V_{n} is a canonical quotient of \mathcal{V}_{n} and conjectured that $\operatorname{Char}\left(V_{n}^{+}\right) \cong\left(\mathbf{Z} / p^{n} \mathbf{Z}\right)^{r}$ where r is the index of irregularity of p. We prove that, under a certain extra condition on $p, \mathcal{V}_{n} \cong$ $\mathrm{Cl}^{(p)}\left(\mathbf{Q}\left(\zeta_{n-1}\right)\right) \cong\left(\mathbf{Z} / p^{n} \mathbf{Z}\right)^{r}$ and $V_{n} \cong \bigoplus_{i=1}^{r}\left(\mathbf{Z} / p^{n-\delta_{i}} \mathbf{Z}\right)$, where δ_{i} is 0 or 1 .

1. Introduction. Let p be an odd semi-regular prime, let $C_{p^{n}}$ be the cyclic group of order p^{n} and let ζ_{n} be a primitive p^{n+1} th root of unity. For $k \geq 0$ and $i \geq 1$, let $A_{k, i}:=\mathbf{Z}[x] /\left(\left(x^{p^{k+i}}-1\right) /\left(x^{p^{k}}-1\right)\right)$ and $D_{k, i}:=A_{k, i} \bmod p$. Note that $A_{n, 1} \cong \mathbf{Z}\left[\zeta_{n}\right]$. By a generalization of Rim's theorem (see for example [1]), $\operatorname{Pic} \mathbf{Z} C_{p^{n}} \cong \operatorname{Pic} A_{0, n}$ for all $n \geq 1$. It is well known that there exists a pull-back diagram (Cartesian square)

and an associated Mayer-Vietoris exact sequence
$\mathbf{Z}\left[\zeta_{n}\right]^{*} \oplus A_{0, n}^{*} \rightarrow D_{0, n}^{*} \rightarrow \operatorname{Pic} A_{0, n+1} \rightarrow \operatorname{Pic} \mathbf{Z}\left[\zeta_{n}\right] \oplus \operatorname{Pic} A_{0, n} \rightarrow \operatorname{Pic} D_{0, n}$.
[^0]Key words and phrases. Picard groups, integral group rings.
Received by the editors on August 7, 2001, and in revised form on

[^0]: 1991 AMS Mathematics Subject Classification. 11R65, 11R21, 19 A31.

