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ON KERVAIRE AND MURTHY’S CONJECTURE

OLA HELENIUS AND ALEXANDER STOLIN

ABSTRACT. Let p be a semi-regular prime, let Cpn be a
cyclic group of order pn and let ζn be a primitive pn+1th root
of unity. There is a short exact sequence

0 → V +
n ⊕ V −

n → PicZCpn+1 → ClQ(ζn) + PicZCpn → 0.

In 1977 Kervaire and Murthy established an exact structure
for V −

n , proved that Char (V +
n )⊆Char (V+

n )⊆Cl(p)(Q(ζn−1)),
where Vn is a canonical quotient of Vn and conjectured that
Char (V +

n ) ∼= (Z/pnZ)r where r is the index of irregularity
of p.

We prove that, under a certain extra condition on p, Vn
∼=

Cl(p)(Q(ζn−1)) ∼= (Z/pnZ)r and Vn
∼=

⊕r

i=1
(Z/pn−δiZ),

where δi is 0 or 1.

1. Introduction. Let p be an odd semi-regular prime, let Cpn be
the cyclic group of order pn and let ζn be a primitive pn+1th root of
unity. For k ≥ 0 and i ≥ 1, let Ak,i := Z[x]/((xpk+i −1)/(xpk −1)) and
Dk,i := Ak,i mod p. Note that An,1

∼= Z[ζn]. By a generalization of
Rim’s theorem (see for example [1]), PicZCpn ∼= PicA0,n for all n ≥ 1.
It is well known that there exists a pull-back diagram (Cartesian square)

A0,n+1

u

w Z[ζn]

u

A0,n w D0,n :=
A0,n

pA0,n

and an associated Mayer-Vietoris exact sequence

Z[ζn]∗⊕A∗
0,n → D∗

0,n → PicA0,n+1 → PicZ[ζn]⊕PicA0,n → PicD0,n.
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