ON KERVAIRE AND MURTHY'S CONJECTURE

OLA HELENIUS AND ALEXANDER STOLIN

ABSTRACT. Let p be a semi-regular prime, let C_{p^n} be a cyclic group of order p^n and let ζ_n be a primitive p^{n+1} th root of unity. There is a short exact sequence

$$0 \to V_n^+ \oplus V_n^- \to \operatorname{Pic} \mathbf{Z} C_{p^{n+1}} \to \operatorname{Cl} \mathbf{Q}(\zeta_n) + \operatorname{Pic} \mathbf{Z} C_{p^n} \to 0.$$

In 1977 Kervaire and Murthy established an exact structure for V_n^- , proved that $\operatorname{Char}(V_n^+) \subseteq \operatorname{Char}(V_n^+) \subseteq \operatorname{Cl}^{(p)}(\mathbf{Q}(\zeta_{n-1}))$, where V_n is a canonical quotient of \mathcal{V}_n and conjectured that $\operatorname{Char}(V_n^+) \cong (\mathbf{Z}/p^n\mathbf{Z})^r$ where r is the index of irregularity of p.

We prove that, under a certain extra condition on p, $\mathcal{V}_n \cong \operatorname{Cl}^{(p)}(\mathbf{Q}(\zeta_{n-1})) \cong (\mathbf{Z}/p^n\mathbf{Z})^r$ and $V_n \cong \bigoplus_{i=1}^r (\mathbf{Z}/p^{n-\delta_i}\mathbf{Z})$, where δ_i is 0 or 1.

1. Introduction. Let p be an odd semi-regular prime, let C_{p^n} be the cyclic group of order p^n and let ζ_n be a primitive p^{n+1} th root of unity. For $k \geq 0$ and $i \geq 1$, let $A_{k,i} := \mathbf{Z}[x]/((x^{p^{k+i}}-1)/(x^{p^k}-1))$ and $D_{k,i} := A_{k,i} \mod p$. Note that $A_{n,1} \cong \mathbf{Z}[\zeta_n]$. By a generalization of Rim's theorem (see for example [1]), Pic $\mathbf{Z}C_{p^n} \cong \operatorname{Pic} A_{0,n}$ for all $n \geq 1$. It is well known that there exists a pull-back diagram (Cartesian square)

$$A_{0,n+1} \xrightarrow{} \mathbf{Z}[\zeta_n]$$

$$\downarrow \qquad \qquad \downarrow$$

$$A_{0,n} \xrightarrow{} D_{0,n} := \frac{A_{0,n}}{pA_{0,n}}$$

and an associated Mayer-Vietoris exact sequence

$$\mathbf{Z}[\zeta_n]^* \oplus A_{0,n}^* \to D_{0,n}^* \to \operatorname{Pic} A_{0,n+1} \to \operatorname{Pic} \mathbf{Z}[\zeta_n] \oplus \operatorname{Pic} A_{0,n} \to \operatorname{Pic} D_{0,n}.$$

1991 AMS Mathematics Subject Classification. 11R65, 11R21, 19A31. Key words and phrases. Picard groups, integral group rings. Received by the editors on August 7, 2001, and in revised form on

Copyright ©2002 Rocky Mountain Mathematics Consortium