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M-FREE ABELIAN GROUPS

MANFRED DUGAS, SHALOM FEIGELSTOCK AND JUTTA HAUSEN

ABSTRACT. We study M -free abelian groups with M -
basis X, i.e., each map f : X → M extends uniquely to a
homomorphism ϕ : A → M . We will find conditions under
which X generates a direct summand of A.

If F is an object in a concrete category, X a nonempty set and
i : X → F a map, then F is free on the set X if for each M in the
category and for each map f : X → M there is a morphism ϕ : F → M
such that ϕ◦i = f , cf. [7]. We will investigate, in the category of abelian
groups only, which objects are “free” if, in the above definition, “each
M” is replaced by “some fixed M .” The answer, of course, depends on
what kind of abelian group M actually is.

Definition. Let A,M be abelian groups and X a subset of A. Then
A is M -free with M -basis X if, for each map f : X → M , there is
a unique ϕ ∈ Hom(A,M) such that ϕ �X= f where ϕ �X is the
restriction of ϕ to X.

We say that A is split-M -free if A = H ⊕ 〈X〉 such that 〈X〉 is free
abelian with basis X and Hom (H,M) = 0.

Of course, split-M -free implies M -free, and the main purpose of this
paper is to investigate for which abelian groups M we have that all
M -free groups A are actually split-M -free.

Let Cent (R) denote the center of a ring R. We will prove:

Main theorem. Let A be M -free with M -basis X and M slender.
If either

(a) M is countable and End (M)+, the additive group of the endo-
morphism ring of M , is free abelian, or
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