NESTED SEQUENCES OF BALLS, UNIQUENESS OF HAHN-BANACH EXTENSIONS AND THE VLASOV PROPERTY

PRADIPTA BANDYOPADHYAY AND ASHOKE K. ROY

Abstract

In this work we characterize when a single linear functional dominated by a sublinear functional p on a subspace of a real vector space has a unique extension to the whole space dominated by p in terms of nested sequences of " p-balls" in a quotient space. This is then specialized to obtain characterizations of the phenomenon when a single linear functional on a subspace of a Banach space has unique normpreserving extension to the whole space, thus localizing and generalizing some recent work of Oja and Põldvere. These results are used to characterize w^{*}-asymptotic norming properties in terms of nested sequences of balls in X extending the notion of Property (V) introduced by Sullivan. A variety of examples and applications of the main results are also presented.

1. Introduction. We work with real scalars. For a Banach space X, we denote by $B(X), S(X)$ and $B(x, r)$, or $B[x, r]$, respectively, the closed unit ball, the unit sphere and the open, or closed, ball of radius $r>0$ around $x \in X$. When X is just a vector space, we will denote linear functionals on X by f, g, etc., while for a Banach space X, elements of the dual X^{*} will be denoted by x^{*}, y^{*}, etc.

Definition 1.1. A closed subspace Y of a Banach space X is said to be a U-subspace of X if for any $y^{*} \in Y^{*}$ there exists a unique Hahn-Banach (i.e., norm-preserving) extension of y^{*} in X^{*}.
X is said to be Hahn-Banach smooth if X is a U-subspace of $X^{* *}$ under the canonical embedding of X in $X^{* *}$.

[^0]
[^0]: 1991 AMS Mathematics Subject Classification. 46A22, 46B04, 46B20.
 Key words and phrases. Sublinear functionals, nested sequences of (p-)balls, (p-) U-subspaces, ideals, $\left(w^{*}-\right)$ asymptotic norming properties, Hahn-Banach smoothness, Vlasov Property.
 Received by the editors on September 13, 2000, and in revised form on June 18, 2001.

