BOCKY MOUNTAIN JOURNAL OF MATHEMATICS Volume 33, Number 2, Summer 2003

ANOTHER OBSERVATION ON THE DISTRIBUTION OF VALUES OF CONTINUED FRACTIONS $K(a_n/1)$

WALTER M. REID

Offered in celebration of the 70th birthday of William B. Jones Dedicated to the memory of Wolfgang J. Thron (August 7, 1918–August 21, 2001)

ABSTRACT. Jacobsen, Thron and Waadeland [1] determined results about the probability distribution for the values f of convergent continued fractions $K(a_n/1)$ in the case that the elements a_n are uniformly distributed both over the "real Worpitzky inverval" $[-\rho(1-\rho), \rho(1-\rho)]$ and over the complex Worpitzky disk $\{z : |z| \le \rho(1-\rho)\}$, for $0 < \rho \le \frac{1}{2}$. This note explores extensions of some of those results in the case that the elements a_n are piecewise linearly distributed, with symmetry about zero, on the real Worpitzky interval.

Introduction. We are considering the values of continued 1. fractions of the form

(1.1)
$$K_{n=1}^{\infty}\left(\frac{a_n}{1}\right) = \frac{a_1}{1+} \frac{a_2}{1+} + \dots + \frac{a_n}{1+} \dots$$

where the $a_n \neq 0$ are taken from the real Worpitsky interval

(1.2)
$$W = [-\rho(1-\rho), \ \rho(1-\rho)]$$

for $0 < \rho \leq \frac{1}{4}$. This interval is known to be a convergence region for (1.1). The values, f, of (1.1) are known to fill in the best limit value interval

(1.3)
$$V = [-\rho, \rho]$$

Here, however, we assume that the a_n have a known distribution on (1.2); the problem is to determine the distribution of the values,

¹⁹⁹¹ AMS Mathematics Subject Classification. AMS(MOS): 30B70, 65D15; CR; G12 Key words and phrases. Continued fractions, probability distributions.

Copyright ©2003 Rocky Mountain Mathematics Consortium