ROCKY MOUNTAIN JOURNAL OF MATHEMATICS Volume 33, Number 2, Summer 2003

CONVERGENCE OF PPC-CONTINUED FRACTION APPROXIMANTS IN FREQUENCY ANALYSIS

WILLIAM B. JONES, VIGDIS BREVIK PETERSEN AND HAAKON WAADELAND

Dedicated to the memory of Wolfgang J. Thron (August 17, 1918–August 21, 2001)

1. Introduction. Many natural phenomena can be represented by real-valued functions of the form

(1.1a)
$$G(t) = \sum_{j=-I}^{I} \alpha_j e^{i2\pi f_j t}, \quad I \in \mathbf{N},$$

where t denotes time (sec.), the frequencies f_j are in cycles per sec (Hertz) and the complex amplitudes α_j satisfy

(1.1b)
$$\alpha_0 \ge 0 \ne \alpha_j = \bar{\alpha}_{-j}, \quad f_j = -f_{-j}, \text{ for } j = 1, 2, \dots, I$$

and

(1.1c)
$$0 = f_0 < f_1 < f_2 < \dots < f_I.$$

The frequency analysis problem (FAP) consists of determining the unknown frequencies f_j by using N values of "observed data"

(1.2)
$$G(t_m), \quad m = 0, 1, \dots, N-1, \quad \text{where } t_m := m\Delta t, \quad \Delta t > 0.$$

For convenience we introduce normalized frequencies

(1.3a)
$$\omega_j := 2\pi f_j \Delta t, \quad j = 0, \pm 1, \pm 2, \dots, \pm I,$$

with the restrictions imposed by

(1.3b)
$$0 = \omega_0 < \omega_1 < \omega_2 < \dots < \omega_I < \pi$$

Received by the editors on October 15, 2001, and in revised form on March 21, 2002.

Copyright ©2003 Rocky Mountain Mathematics Consortium