VALUES OF LUCAS SEQUENCES MODULO PRIMES

ZHI-HONG SUN

Abstract

Let p be an odd prime, and a, b be two integers. It is the purpose of the paper to determine the values of $u_{(p \pm 1) / 2}(a, b)(\bmod p)$, where $\left\{u_{n}(a, b)\right\}$ is the Lucas sequence given by $u_{0}(a, b)=0, u_{1}(a, b)=1$ and $u_{n+1}(a, b)=$ $b u_{n}(a, b)-a u_{n-1}(a, b)(n \geq 1)$. In the case $a=-c^{2}$, a reciprocity law is established. As applications we obtain the criteria for $p \mid u_{(p-1) / 4}(a, b)($ if $p \equiv 1(\bmod 4))$ and for $k \in Q_{0}(p)$ and $k \in Q_{1}(p)$, where $Q_{0}(p)$ and $Q_{1}(p)$ are defined as in [10].

1. Introduction. Let a and b be two real numbers. The Lucas sequences $\left\{u_{n}(a, b)\right\}$ and $\left\{v_{n}(a, b)\right\}$ are defined as follows:

$$
\begin{align*}
& u_{0}(a, b)=0, \quad u_{1}(a, b)=1 \\
& u_{n+1}(a, b)=b u_{n}(a, b)-a u_{n-1}(a, b), n \geq 1 \tag{1.1}\\
& v_{0}(a, b)=2, \quad v_{1}(a, b)=b, \tag{1.2}\\
& v_{n+1}(a, b)=b v_{n}(a, b)-a v_{n-1}(a, b), \quad n \geq 1 .
\end{align*}
$$

It is well known that

$$
\begin{align*}
u_{n}(a, b)= & \frac{1}{\sqrt{b^{2}-4 a}}\left(\left(\frac{b+\sqrt{b^{2}-4 a}}{2}\right)^{n}\right. \tag{1.3}\\
& \left.-\left(\frac{b-\sqrt{b^{2}-4 a}}{2}\right)^{n}\right) \quad\left(b^{2}-4 a \neq 0\right)
\end{align*}
$$

and

$$
\begin{equation*}
v_{n}(a, b)=\left(\frac{b+\sqrt{b^{2}-4 a}}{2}\right)^{n}+\left(\frac{b-\sqrt{b^{2}-4 a}}{2}\right)^{n} \tag{1.4}
\end{equation*}
$$

[^0] 2001.

[^0]: 2000 AMS Mathematics Subject Classification. 11B39, 11B50, 11A15, 11E25.
 Key words and phrases. Prime, Lucas sequence, reciprocity law.
 Received by the editors on November 9, 2000, and in revised form on May 30,

