ROCKY MOUNTAIN JOURNAL OF MATHEMATICS Volume 33, Number 3, Fall 2003

EXTREMAL BOUNDED SLIT MAPPINGS FOR LINEAR FUNCTIONALS

DIMITRI V. PROKHOROV

ABSTRACT. Let S(M) be the class of holomorphic univalent functions $f(z) = z + a_2 z^2 + \ldots$, |f(z)| < M, |z| < 1and $L(f) = \sum_{k=2}^n \lambda_k a_k$, $(\lambda_2, \ldots, \lambda_n) \in \mathbf{R}^{n-1}$. We prove that under some conditions among all bounded slit mappings only the Pick functions can be extremal for $\Re L(f)$ in S(M)provided M is close to 1. In particular, if $\alpha > 0$, (n-1) and (m-1) are odd and relatively prime, then the Pick function maximizes $\Re(a_n + \alpha a_m)$ in S(M) for M close to 1.

1. Introduction. Let S(M), M > 1, be the class of holomorphic functions f in the unit disk $D = \{z : |z| < 1\}$,

$$f(z) = z + a_2 z^2 + \dots, \quad z \in D,$$

which are univalent and bounded by M in D, i.e., $|f(z)| < M, z \in D$.

Denote by $S^1(M)$ the class of functions $f \in S(M)$ which map D onto the disk D_M of radius M centered at the origin and slit along an analytic curve. An important member of $S^1(M)$ is the so-called Pick function $P_M(z)$ which maps D onto D_M slit along the segment $[-M, -M(2M - 1 - 2\sqrt{M(M - 1)})].$

Consider a linear continuous functional L on S(M) given by

$$L(f) = \sum_{k=2}^{n} \bar{\lambda}_k a_k, \quad \lambda_k \in \mathbf{C}, \quad k = 2, \dots, n.$$

So L is determined by the vector $\boldsymbol{\lambda} = (\lambda_2, \dots, \lambda_n) \in \mathbf{C}^{n-1}$.

We will prove the following

Theorem 1. Let $\lambda = (\lambda_2, \ldots, \lambda_n) \in \mathbb{R}^{n-1}$ and

$$\max_{f \in S(M)} \Re L(f) = \Re L(f_0)$$

Received by the editors on November 10, 2000.

Copyright ©2003 Rocky Mountain Mathematics Consortium