INFLECTION POINTS AND NONSINGULAR EMBEDDINGS OF SURFACES IN R ${ }^{5}$

D.K.H. MOCHIDA, M.C. ROMERO-FUSTER AND M.A.S. RUAS

Abstract

We define asymptotic direction fields on surfaces embedded in \mathbf{R}^{5} and characterize their critical points both as umbilics of height functions and as singular points of order 2 of the embedding in Feldman's sense. We show that there are at least one and at most five of these fields defined locally at each point of a generically embedded closed surface. We use this viewpoint in order to consider the existence of singular points of order 2 on a given surface.

1. Introduction. The osculating space of order k at a point p of a m-dimensional manifold M in \mathbf{R}^{n} is the linear subspace $T_{p}^{k} M$ spanned by the osculating k -spaces of all the curves contained in M passing through p. A smooth map $f: M \rightarrow N$ between smooth manifolds M and N is said to be nondegenerate or non singular of order \mathbf{k} if it induces an injective linear map $T_{p}^{k} f: T_{p}^{k} M \rightarrow T_{f(p)}^{k} N, \forall p \in M$. These maps were studied by E.A. Feldman ([5]-[7]), who determined the dimensions m, n of the manifolds M and N for which the set of non degenerate embeddings of order k is open and dense in the set of all the embeddings of M in N with the Whitney C^{∞}-topology and developed several geometrical applications of these methods.

The existence of nondegenerate embeddings of order k from M to N appears to be related to the global geometry of these manifolds. An interesting question arising in this context is that of which surfaces admit nondegenerate embeddings of order 2 in \mathbf{R}^{n}. For this question to make sense we must consider $n=5,6$, for when $n<5$ there are no such maps, and for $n>6$, Feldman proved that they form a dense set in $\operatorname{Emb}\left(M, \mathbf{R}^{n}\right)$. We consider here the case $n=5$. To approach this problem we use the family of height functions induced by an embedding

[^0]
[^0]: Work of the first author partially supported by FAPESP grant no. 1997/13335-6.
 Work of the second author partially supported by DGCYT grant no. BFM20001110.

 Work of the third author partially supported by FAPESP grant no. 97/10735-3 and CNPq grant no. 300066/88-03.

 Received by the editors on October 6, 2000, and in revised form on February 15, 2001.

