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GENERIC FORMAL FIBERS OF
POLYNOMIAL RING EXTENSIONS

S. LOEPP AND C. ROTTHAUS

ABSTRACT. In this paper we explore the relationship be-
tween the dimension of the generic formal fiber of a Noetherian
local domain R and the dimension of the generic formal fiber
of the domain R[X] localized at (MR, X) where MR is the
maximal ideal of R and X is an indeterminate. Specifically,
we show that if R is a universally catenary local Noetherian
domain such that the dimension of the generic formal fiber of
R[X](MR,X) is dim R, then the dimension of the generic for-
mal fiber of R is dimR−1. We also provide counter-examples
showing that the converse does not hold.

1. Introduction. Let (R,MR) be a local Noetherian domain with
maximal ideal MR, quotient field K and MR-adic completion R̂. The
generic formal fiber ring of R is defined to be R̂⊗R K. The dimension
of the generic formal fiber of R is the Krull dimension of the generic
formal fiber ring of R. In this setting we will denote the dimension
of the generic formal fiber of R by α(R). Suppose that P̂ is a prime
ideal of R̂ satisfying P̂ ∩R = (0). Then we say that P̂ is in the generic
formal fiber of R.

If (R,MR) is a complete local domain of dimension n ≥ 1 which
contains a field, Matsumura shows in [4, Example 1] that the dimension
of the generic formal fiber of the localized polynomial ring R[X](MR,X)

is n− 1. This implies that for every local Noetherian domain (A,MA)
of dimension n the dimension of the generic formal fiber ring of
A[X](MA,X) is at least n − 1. This fact seems to indicate that there
is little or no relationship between α(A) and α(A[X](MA,X)) except
possibly in the case where α(A) = n− 1 = dim (A)− 1.
Heinzer, Rotthaus and Sally informally posed the following conjec-

ture.
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