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WEAK SYMMETRY IN NATURALLY REDUCTIVE
HOMOGENEOUS NILMANIFOLDS

JORGE LAURET

ABSTRACT. We prove that within the class of naturally
reductive homogeneous nilmanifolds, the notions of weak sym-
metry, i.e., any two points can be interchanged by an isometry,
and commutativity, i.e., isometry invariant differential opera-
tors commute, are equivalent.

A connected Riemannian manifold M is said to be weakly symmetric
if for any two points p, q ∈ M there exists an isometry of M mapping
p to q and q to p. These spaces were introduced by Selberg in the
framework of his development of the trace formula, see [12], where it is
proved that in a weakly symmetric space M , the algebra of all invariant
(with respect to the full isometry group I(M)) differential operators on
M is commutative, that is, M is a commutative space. Selberg asks
in [12] whether the converse holds. The answer is negative, the known
counterexamples arise in certain homogeneous nilmanifolds, so-called
H-type groups, see [8, 9]. On the other hand, it has been proved by
Akhiezer and Vinberg [1] that, for homogeneous spaces of reductive
algebraic groups, the answer is affirmative.

In such a way, a natural question takes place: under what extra con-
ditions on the homogeneous Riemannian manifold M , the weak sym-
metry is necessary for the commutativity of I(M)-invariant differential
operators?

With such a question in mind, the first observation we make is
that none of the counterexamples found is naturally reductive. A
Riemannian manifold M is said to be naturally reductive, if there exists
a transitive Lie group G of isometries with isotropy subgroup K at
p ∈ M , and an Ad (K)-invariant vector subspace m of g complementary
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