COHEN-MACAULAYNESS OF TENSOR PRODUCTS

LEILA KHATAMI AND SIAMAK YASSEMI

Abstract

Let (R, m) be a commutative noetherian local ring. Suppose that M and N are finitely generated modules over R such that M has finite projective dimension and such that $\operatorname{Tor}_{i}^{R}(M, N)=0$ for all $i>0$. The main result of this note gives a condition on M which is necessary and sufficient for the tensor product of M and N to be a CohenMacaulay module over R, provided N is itself a CohenMacaulay module.

1. Introduction. Throughout this note (R, \mathfrak{m}) is a commutative noetherian local ring with nonzero identity and the maximal ideal \mathfrak{m}. By M and N we always mean nonzero finitely generated R-modules. The projective dimension of an R-module M is denoted by proj.dim M.

The well-known notion "grade of M ", grade M, has been introduced by Rees, see $[\mathbf{8}]$, as the least integer $t \geq 0$ such that $\operatorname{Ext}_{R}^{t}(M, R) \neq 0$. In [10], we have defined the "grade of M and N ", grade (M, N), as the least integer $t \geq 0$ such that $\operatorname{Ext}_{R}^{t}(M, N) \neq 0$.

One of the main results of this note is Theorem 1.8, and it states:
Let N be a Cohen-Macaulay R-module, and let M be an R-module with finite projective dimension. If $\operatorname{Tor}_{i}^{R}(M, N)=0$ for all $i>0$, then $M \otimes_{R} N$ is Cohen-Macaulay if and only if grade $(M, N)=\operatorname{proj} . \operatorname{dim} M$.

This theorem can be considered as a generalization of the following well-known statement, cf. [4, Theorem 2.1.5]:
(T1) Let R be a Cohen-Macaulay local ring, and let M be a finite R module with finite projective dimension. Then M is a Cohen-Macaulay if and only if grade $M=$ proj. $\operatorname{dim} M$.

On the other hand the following statement from Yoshida can be concluded from our result:

[^0]
[^0]: This research was supported in part by a grant from IPM.
 1991 AMS Mathematics Subject Classification. 13C14, 13D45, 13H10.
 Key words and phrases. Cohen-Macaulay modules.
 Received by the editors on March 2, 2001, and in revised form on November 6, 2001.

