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THE DIRICHLET PROBLEM FOR
QUASIMONOTONE SYSTEMS OF

SECOND ORDER EQUATIONS

GERD HERZOG

ABSTRACT. We prove the existence of a solution of the
Dirichlet problem u′′ + f(t, u) = 0, u(0) = u(1) = 0 between
upper and lower solutions, where f : [0, 1] × E → E is
quasimonotone increasing in its second variable with respect
to a general solid cone.

1. Introduction. Let E be a finite-dimensional real vector space
ordered by a cone K. A cone K is a nonempty closed convex subset
of E with λK ⊆ K (λ ≥ 0), and K ∩ (−K) = {0}. As usual,
x ≤ y :⇐⇒ y − x ∈ K. Furthermore we assume that K is solid,
that is, K0 �= ∅, and we write x � y if y−x ∈ K0. For x ≤ y let [x, y]
denote the order interval of all z with x ≤ z ≤ y. Let K∗ denote the
dual cone of K, that is, the set of all ϕ ∈ E∗ with ϕ(x) ≥ 0 (x ≥ 0).
We fix p ∈ K0 and consider E to be normed by ‖ · ‖, the Minkowski
functional of [−p, p]. Note that −‖x‖p ≤ x ≤ ‖x‖p, x ∈ E.

A function g : E → E is called quasimonotone increasing (qmi for
short), in the sense of Volkmann [16], if

x, y ∈ E, x ≤ y, ϕ ∈ K∗, ϕ(x) = ϕ(y) =⇒ ϕ(g(x)) ≤ ϕ(g(y)).

A function f : [0, 1] × E → E is called qmi if x �→ f(t, x) is qmi for
each t ∈ [0, 1].

In the sequel let f : [0, 1] × E → E be continuous and qmi. We
consider the Dirichlet boundary value problem

(1) u′′(t) = f(t, u(t)), t ∈ [0, 1], u(0) = u(1) = 0.
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