ROCKY MOUNTAIN JOURNAL OF MATHEMATICS Volume 34, Number 1, Spring 2004

SPECTRAL ESTIMATES FOR THE COMMUTATOR OF TWO-DIMENSIONAL HILBERT TRANSFORMATION AND THE OPERATOR OF MULTIPLICATION WITH A C¹ FUNCTION

M.R. DOSTANIĆ

1. Introduction and notation. Let Γ be a set of simple nonintersecting closed contours of Lyapunov type and S_{Γ} be the singular integral along Γ :

$$(S_{\Gamma}\varphi)(t) = \frac{1}{\pi i} \int_{\Gamma} \frac{\varphi(s)}{s-t} \, ds, \quad t \in \Gamma;$$

the contour Γ is considered oriented in some manner. It is well known that the operator S_{Γ} is bounded in each of the spaces $L^{p}(\Gamma)$, 1 .

Also, it is known that if a function $t \mapsto a(t)$ satisfies a Hölder condition on Γ or if $a \in C(\Gamma)$, then the operator $aS_{\Gamma} - S_{\Gamma}a$ is compact on $L^{p}(\Gamma)$, see [6]. In the special case, when Γ is an interval on the real axis, S_{Γ} is the Hilbert transformation.

Instead of S_{Γ} it is possible to consider some other singular integral operator and study its spectral properties.

Let Ω be a domain in **C**. Denote by $L^2(\Omega)$ the space of complexvalued functions on Ω such that the norm

$$\|f\| = \left(\int_{\Omega} |f(\xi)|^2 \, dA(\xi)\right)^{1/2}$$

is finite. Here dA denotes Lebesgue measure on Ω .

It is known (see [8]) that the formula

$$H_{\Omega}f(z) = -\frac{1}{\pi} \text{ p.v. } \int_{\Omega} \frac{f(\xi)}{(\xi-z)^2} \, dA(\xi)$$

1991 AMS *Mathematics Subject Classification*. 47B10. Received by the editors on April 11, 2001.

Copyright ©2004 Rocky Mountain Mathematics Consortium