ROCKY MOUNTAIN JOURNAL OF MATHEMATICS Volume 34, Number 2, Spring 2004

RECURRENCES FOR THE PARTITION FUNCTION AND ITS RELATIVES

JOHN A. EWELL

ABSTRACT. For each integer $n \ge 0$, (i) p(n) := the number of unrestricted partitions of n, (ii) q(n) := the number of partitions of n into distinct parts and (iii) $q_0(n) :=$ the number of partitions of n into distinct odd parts. Conventionally, $p(0) = q(0) = q_0(0) := 1$. Presented here are: two apparently new recurrences for $p(\cdot)$ and three formulas expressing the functions $q_0(\cdot)$ and $q(\cdot)$ in terms of the function $p(\cdot)$.

1. Introduction. We begin our discussion with a definition.

Definition 1.1. As usual, $\mathbf{P} := \{1, 2, 3, ...\}$, $\mathbf{N} := \mathbf{P} \cup \{0\}$, $\mathbf{Z} := \{0, \pm 1, \pm 2, ...\}$ and $\mathbf{Q} :=$ the set of all rational numbers. Then, for each $n \in \mathbf{N}$, (i) p(n) := the number of unrestricted partitions of n, (ii) q(n) := the number of partitions of n into distinct parts and (iii) $q_0(n) :=$ the number of partitions of n into distinct odd parts. Conventionally, $p(0) = q(0) = q_0(0) := 1$. We also adopt the convention that $p(x) = q(x) = q_0(x) := 0$ whenever $x \in \mathbf{Q} - \mathbf{N}$.

Euler's pentagonal number recurrence for the partition function $p(\cdot)$, viz.,

$$p(n) = \sum_{k \in \mathbf{P}} (-1)^{k-1} \{ p(n-k(3k-1)/2) + p(n-k(3k+1)/2) \},\$$

for each $n \in \mathbf{P}$, where p(0) = 1, has been known for more than 250 years.

Doubtless, any new recurrence for $p(\cdot)$ will always be compared with Euler's recurrence. In this paper we present two new recurrences for $p(\cdot)$, Theorems 1.2 and 1.3, below stated. Our concluding remarks

¹⁹⁹¹ AMS Mathematics Subject Classification. Primary 11P81, Secondary 05A17.

Key words and phrases. Restricted and unrestricted partitions of integers. Received by the editors on October 3, 2001, and in revised form on December 31, 2001.