ROCKY MOUNTAIN JOURNAL OF MATHEMATICS Volume 34, Number 2, Summer 2004

THE RATIONALITY OF THE MODULI SPACES OF BIELLIPTIC CURVES OF GENUS FIVE WITH MORE BIELLIPTIC STRUCTURES

GIANFRANCO CASNATI

0. Introduction and notations. Let *C* be an irreducible, smooth, projective curve of genus $g \ge 2$, defined over the complex field **C**. The curve *C* is called *bielliptic* if it admits a degree 2 morphism $\pi: C \to E$ onto an elliptic curve *E*: such a morphism is called a *bielliptic structure*.

If $g \ge 6$ then the bielliptic structure is unique. If g = 3, 4, 5 this holds true generically, but there exist curves C carrying more than one bielliptic structure.

We denote by $\mathfrak{M}_g^{be,n}$ the locus of points representing curves with at least n bielliptic structures inside the coarse moduli space \mathfrak{M}_g of smooth curves of genus g. There are the following sharp bounds: $n \leq 21, 10, 5$ if g = 3, 4, 5 respectively (see Corollary 5.8 of [3]).

We focus our interest on the case g = 5. It is already known that $\mathfrak{M}_5^{be,1}$ is rational (see [6]). The aim of this paper is to prove the following

Main Theorem. The loci $\mathfrak{M}_5^{be,2}$, $\mathfrak{M}_5^{be,3}$ and $\mathfrak{M}_5^{be,4} = \mathfrak{M}_5^{be,5}$ are irreducible and rational of respective dimensions 5, 4 and 2.

The loci $\mathfrak{M}_5^{be,n}$ play a helpful role in the description of the structure of the Chow ring $A(\mathfrak{M}_5)$ (see Section 4 of [8] where $\mathfrak{M}_5^{be,n} =: B_n$).

For the proof of the main theorem above we proceed imitating the method used in [6] for proving the rationality of $\mathfrak{M}_5^{be,1}$. Let $[C] \in \mathfrak{M}_5$ be the isomorphism class of a curve C. The canonical model \widetilde{C} of C is the base locus of a net of quadric hypersurfaces \mathcal{N} in $\mathbf{P}_{\mathbf{C}}^4$. Let N be a projective plane parametrizing the quadrics in \mathcal{N} . The discriminant curve $D \subseteq N$ of \mathcal{N} is a stable plane quintic.

²⁰⁰⁰ AMS Mathematics Subject Classification. 14H10, 14H45. Key words and phrases. Curve, moduli, rationality.

Copyright ©2004 Rocky Mountain Mathematics Consortium