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THE RATIONALITY OF THE MODULI SPACES
OF BIELLIPTIC CURVES OF GENUS FIVE
WITH MORE BIELLIPTIC STRUCTURES

GIANFRANCO CASNATI

0. Introduction and notations. Let C be an irreducible, smooth,
projective curve of genus g ≥ 2, defined over the complex field C. The
curve C is called bielliptic if it admits a degree 2 morphism π: C → E
onto an elliptic curve E: such a morphism is called a bielliptic structure.

If g ≥ 6 then the bielliptic structure is unique. If g = 3, 4, 5 this
holds true generically, but there exist curves C carrying more than one
bielliptic structure.

We denote by Mbe,n
g the locus of points representing curves with at

least n bielliptic structures inside the coarse moduli space Mg of smooth
curves of genus g. There are the following sharp bounds: n ≤ 21, 10, 5
if g = 3, 4, 5 respectively (see Corollary 5.8 of [3]).

We focus our interest on the case g = 5. It is already known that
Mbe,1

5 is rational (see [6]). The aim of this paper is to prove the
following

Main Theorem. The loci Mbe,2
5 , Mbe,3

5 and Mbe,4
5 = Mbe,5

5 are
irreducible and rational of respective dimensions 5, 4 and 2.

The loci Mbe,n
5 play a helpful role in the description of the structure

of the Chow ring A(M5) (see Section 4 of [8] where Mbe,n
5 =: Bn).

For the proof of the main theorem above we proceed imitating the
method used in [6] for proving the rationality of Mbe,1

5 . Let [C] ∈ M5

be the isomorphism class of a curve C. The canonical model C̃ of C is
the base locus of a net of quadric hypersurfaces N in P4

C. Let N be
a projective plane parametrizing the quadrics in N . The discriminant
curve D ⊆ N of N is a stable plane quintic.
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