ON THE PRESERVATION OF DIRECTION CONVEXITY UNDER DIFFERENTIATION AND INTEGRATION

FRODE RØNNING

ABSTRACT. For functions which are convex in one direction, we investigate to what extent this property is preserved under differentiation and integration.

1. Introduction. A domain $M \subset \mathbf{C}$ is said to be convex in the direction $e^{i\varphi}$ if for every $a \in \mathbf{C}$ the set

$$M \cap \left\{ a + te^{i\varphi} : t \in \mathbf{R} \right\}$$

is either connected or empty. We denote by $C(\varphi)$ the family of univalent analytic functions f in the unit disk \mathbf{D} with the property that f(0)=0 and $f(\mathbf{D})$ is convex in the direction $e^{i\varphi}$. One of the interesting features about functions that are convex in one direction is that it is not in general so that $f \in C(\varphi)$ implies that $f(rz) \in C(\varphi)$, for r < 1. It was conjectured by Goodman and Saff [2], and later proved by Ruscheweyh and Salinas [9], that for $0 < r \le \sqrt{2} - 1$ we have that $f \in C(\varphi)$ implies $f(rz) \in C(\varphi)$, but for $\sqrt{2} - 1 < r < 1$ this is not necessarily the case. In solving the Goodman-Saff conjecture, Ruscheweyh and Salinas introduced the class DCP, direction convexity preserving functions [9].

Definition 1.1. A function g, analytic in \mathbf{D} , is said to be direction convexity preserving, DCP, if for every $\varphi \in \mathbf{R}$, and every $f \in C(\varphi)$ we have $g * f \in C(\varphi)$. (* denotes the Hadamard product.)

The problem of finding the largest r for which $f \in C(\varphi)$ implies $f(rz) \in C(\varphi)$ can then be formulated as finding the largest r for which the geometrical series 1/(1-rz) is in DCP. Since we have $z/(1-z)^2*f(z)=zf'(z)$ and $\log(1-z)*f(z)=\int_0^z (f(\zeta)/\zeta)d\zeta$, it is clear that if we can find the DCP-radius of the Koebe function

 $1991~{\rm AMS}~{\it Mathematics}~{\it Subject}~{\it Classification}.$ Primary 30C45. Received by the editors on May 7, 2000.