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ON THE PRESERVATION OF
DIRECTION CONVEXITY UNDER

DIFFERENTIATION AND INTEGRATION

FRODE RØNNING

ABSTRACT. For functions which are convex in one direc-
tion, we investigate to what extent this property is preserved
under differentiation and integration.

1. Introduction. A domain M ⊂ C is said to be convex in the
direction eiϕ if for every a ∈ C the set

M ∩
{
a + teiϕ : t ∈ R

}

is either connected or empty. We denote by C(ϕ) the family of univalent
analytic functions f in the unit disk D with the property that f(0) = 0
and f(D) is convex in the direction eiϕ. One of the interesting features
about functions that are convex in one direction is that it is not in
general so that f ∈ C(ϕ) implies that f(rz) ∈ C(ϕ), for r < 1. It was
conjectured by Goodman and Saff [2], and later proved by Ruscheweyh
and Salinas [9], that for 0 < r ≤

√
2 − 1 we have that f ∈ C(ϕ)

implies f(rz) ∈ C(ϕ), but for
√

2−1 < r < 1 this is not necessarily the
case. In solving the Goodman-Saff conjecture, Ruscheweyh and Salinas
introduced the class DCP, direction convexity preserving functions [9].

Definition 1.1. A function g, analytic in D, is said to be direction
convexity preserving, DCP, if for every ϕ ∈ R, and every f ∈ C(ϕ) we
have g ∗ f ∈ C(ϕ). (∗ denotes the Hadamard product.)

The problem of finding the largest r for which f ∈ C(ϕ) implies
f(rz) ∈ C(ϕ) can then be formulated as finding the largest r for
which the geometrical series 1/(1 − rz) is in DCP. Since we have
z/(1 − z)2 ∗ f(z) = zf ′(z) and log(1 − z) ∗ f(z) =

∫ z

0
(f(ζ)/ζ)dζ, it

is clear that if we can find the DCP-radius of the Koebe function
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