SPACES OF OPERATORS, c_0 AND l^1

ELIZABETH M. BATOR AND PAUL W. LEWIS

ABSTRACT. If Y is a Banach space so that l^1 embeds isomorphically as a complemented subspace of the separable space Y^* but c_0 does not embed as a subspace of Y, then it is shown that there is an infinite dimensional Banach space X so that l^1 embeds complementably in $X \otimes_{\gamma} Y^*$ but c_0 does not embed in L(X,Y).

In a classic paper on the structure of Banach spaces [2], Bessaga and Pelczynski established the following result.

Theorem 1. If c_0 embeds isomorphically in the dual X^* of the Banach space X, then l^{∞} embeds in X^* and l^1 embeds complementably in X.

The following complete generalization of Theorem 1 was established in [7]. In this theorem (e_n^*) denotes the canonical unit vector basis of l^1 and $X \otimes_{\gamma} Y^*$ denotes the greatest crossnorm tensor product completion of X and Y^* .

Theorem 2. If X is an infinite dimension Banach space and c_0 embeds in L(X,Y), then l^{∞} embeds in L(X,Y) and there is an isomorphism $J: l^1 \to X \otimes_{\gamma} Y^*$ so that $J(l^1)$ is complemented in $X \otimes Y^*$ and $J(e_n^*)$ is a finite rank tensor for each n.

Of course, the converse of Theorem 1 is immediate, i.e., if l^1 embeds complementably in X, then certainly l^{∞} (and thus c_0) embeds in X^* . The status of the converse of Theorem 2 is not clear at all. There is an example on page 215 of [7] which purports to show that the complementability of l^1 in the greatest crossnorm tensor product completion of X and Y^* does not imply that c_0 embeds in the space L(X,Y) of all bounded linear transformations from X to Y. However,

AMS Mathematics Subject Classification. 46B20, 46B25. Received by the editors on December 14, 2001.