WHEN ARE ASSOCIATES UNIT MULTIPLES?

D.D. ANDERSON, M. AXTELL, S.J. FORMAN AND JOE STICKLES

Abstract

Let R be a commutative ring with identity. For $a, b \in R$ define a and b to be associates, denoted $a \sim b$, if $a \mid b$ and $b \mid a$, to be strong associates, denoted $a \approx b$, if $a=u b$ for some unit u of R, and to be very strong associates, denoted by $a \cong b$, if $a \sim b$ and further when $a \neq 0, a=r b$ implies that r is a unit. Certainly $a \cong b \Rightarrow a \approx b \Rightarrow a \sim b$. In this paper we study commutative rings R, called strongly associate rings, with the property that for $a, b \in R, a \sim b$ implies $a \approx b$ and commutative rings R, called présimplifiable rings, with the property that for $a, b \in R, a \sim b$ (or $a \approx b$) implies that $a \cong b$.

Let R be a commutative ring with identity and let $a, b \in R$. Then a and b are said to be associates, denoted $a \sim b$, if $a \mid b$ and $b \mid a$, or equivalently, if $R a=R b$. Thus if $a \sim b$, there exist $r, s \in R$ with $r a=b$ and $s b=a$ and hence $a=s r a$. So if a is a regular element (i.e., nonzero divisor), $s r=1$ and hence r and s are units. Hence if a and b are regular elements of a commutative ring R with $a \sim b$, then $a=u b$ for some $u \in U(R)$, the group of units of R. For $a, b \in R$, let us write $a \approx b$ if $a=u b$ for some $u \in U(R)$. Of course, $a \approx b$ implies $a \sim b$ for elements a and b of any commutative ring R and for an integral domain the converse is true. In [14], Kaplansky raised the question of when a commutative ring R satisfies the property that for all $a, b \in R$, $a \sim b$ implies $a \approx b$. He remarked that Artinian rings, principal ideal rings, and rings with $Z(R) \subseteq J(R)$ satisfy this property. (Here $Z(R)$ and $J(R)$ denote the set of zero divisors and Jacobson radical of a ring R, respectively.) But he gave two examples of commutative rings that fail to satisfy this property. Let us recall these two examples and give a third example. (1) Let $R=C([0,3])$, the ring of continuous functions on $[0,3]$. Define $a(t), b(t) \in R$ by $a(t)=b(t)=1-t$ on $[0,1]$, $a(t)=b(t)=0$ on $[1,2]$, and $a(t)=-b(t)=t-2$ on [2,3]. Then $a(t) \sim b(t)$ (for $c(t) a(t)=b(t)$ and $c(t) b(t)=a(t)$ where $c(t)=1$ on $[0,1], c(t)=3-2 t$ on $[1,2]$, and $c(t)=-1$ on $[2,3])$, but $a(t) \not \approx b(t)$.

[^0]
[^0]: 2000 AMS Mathematics Subject Classification. 13A05, 13A15, 13F99.
 Received by the editors on September 3, 2002.

