ROCKY MOUNTAIN JOURNAL OF MATHEMATICS Volume 34, Number 3, Fall 2004

WHEN ARE ASSOCIATES UNIT MULTIPLES?

D.D. ANDERSON, M. AXTELL, S.J. FORMAN AND JOE STICKLES

ABSTRACT. Let R be a commutative ring with identity. For $a, b \in R$ define a and b to be associates, denoted $a \sim b$, if a|b and b|a, to be strong associates, denoted $a \approx b$, if a = ub for some unit u of R, and to be very strong associates, denoted by $a \cong b$, if $a \sim b$ and further when $a \neq 0$, a = rb implies that r is a unit. Certainly $a \cong b \Rightarrow a \approx b \Rightarrow a \sim b$. In this paper we study commutative rings R, called strongly associate rings, with the property that for $a, b \in R$, $a \sim b$ implies $a \approx b$ and commutative rings R, called présimplifiable rings, with the $r a, b \in R$, $a \sim b$ (or $a \approx b$) implies that $a \cong b$.

Let R be a commutative ring with identity and let $a, b \in R$. Then a and b are said to be associates, denoted $a \sim b$, if a|b and b|a, or equivalently, if Ra = Rb. Thus if $a \sim b$, there exist $r, s \in R$ with ra = b and sb = a and hence a = sra. So if a is a regular element (i.e., nonzero divisor), sr = 1 and hence r and s are units. Hence if a and b are regular elements of a commutative ring R with $a \sim b$, then a = ubfor some $u \in U(R)$, the group of units of R. For $a, b \in R$, let us write $a \approx b$ if a = ub for some $u \in U(R)$. Of course, $a \approx b$ implies $a \sim b$ for elements a and b of any commutative ring R and for an integral domain the converse is true. In [14], Kaplansky raised the question of when a commutative ring R satisfies the property that for all $a, b \in R$, $a \sim b$ implies $a \approx b$. He remarked that Artinian rings, principal ideal rings, and rings with $Z(R) \subseteq J(R)$ satisfy this property. (Here Z(R)) and J(R) denote the set of zero divisors and Jacobson radical of a ring R, respectively.) But he gave two examples of commutative rings that fail to satisfy this property. Let us recall these two examples and give a third example. (1) Let R = C([0,3]), the ring of continuous functions on [0, 3]. Define $a(t), b(t) \in R$ by a(t) = b(t) = 1 - t on [0, 1], a(t) = b(t) = 0 on [1,2], and a(t) = -b(t) = t - 2 on [2,3]. Then $a(t) \sim b(t)$ (for c(t)a(t) = b(t) and c(t)b(t) = a(t) where c(t) = 1 on [0,1], c(t) = 3 - 2t on [1,2], and c(t) = -1 on [2,3], but $a(t) \not\approx b(t)$.

²⁰⁰⁰ AMS *Mathematics Subject Classification*. 13A05, 13A15, 13F99. Received by the editors on September 3, 2002.

Copyright ©2004 Rocky Mountain Mathematics Consortium