GEOMETRIC CONSTRUCTIONS ON CYCLES BORUT JURČIČ ZLOBEC AND NEŽA MRAMOR KOSTA ABSTRACT. A point, plane or sphere in ${\bf R}^n$ can be described as a point on the Lie quadric $\Omega\subset {\bf P}^{n+2}$, and a geometric construction on points, planes and spheres as a map which associates a point $y \in \Omega$ to a given k-tuple $(x_1, \ldots, x_k) \in \Omega^k$. In this paper the Apollonius construction is described as a map $\mathcal{A}: \mathcal{D} \to \Omega$, where \mathcal{D} is a subset of Ω^{n+1} . A number of geometric constructions is obtained by composing the map \mathcal{A} with Lie reflections and some other projective transformations in \mathbf{P}^{n+2} 1. Introduction. A geometric construction in the space \mathbb{R}^n can be viewed as a map on a set, containing geometric objects described in an appropriate way. In this paper constructions on points, and oriented hyperspheres and hyperplanes in \mathbb{R}^n are considered. A suitable way to describe such geometric constructions comes from Lie geometry. In Lie geometry, oriented planes and spheres of dimension n-1 in \mathbb{R}^n , which are together called *geometric cycles*, are described as points on a quadric surface Ω in the projective space \mathbf{P}^{n+2} , while the angle of intersection is expressed in terms of the Lie product in \mathbb{R}^{n+3} . In this setting, a geometric construction on cycles can be thought of as a map from Ω^k to Ω , which associates to a given k-tuple of points, representing geometric objects in \mathbb{R}^n , a point in Ω , representing a solution of the construction. Lie geometry has been used to study geometric problems on circles for example in [3, 5, 6] and [7]. A thorough treatment of Lie geometry can be found in [1] or [2]. A basic example of a construction on cycles is the oriented Apollonius construction in \mathbb{R}^n , which asks for a sphere or plane, tangent to (n+1) given spheres and planes. In [7], a solution of an Apollonius construction is described as a point in the intersections of a projective line in \mathbf{P}^{n+2} with Ω , and a classification of Apollonius constructions, Part of this work was done in the Laboratory of Computational Electromagnetics and supported by the Ministry of Science and Technology of Slovenia, Research grant No. R-510 00. The work of the second author partially supported by the Ministry of Science and Technology of Slovenia, Research grant No. PO-0509-0101-01. Accepted for publication on July 23, 2002.