ROCKY MOUNTAIN JOURNAL OF MATHEMATICS Volume 34, Number 4, Winter 2004

EXPONENTIAL FUNCTION ANALOGUE OF KLOOSTERMAN SUMS

IGOR E. SHPARLINSKI

ABSTRACT. We consider exponential sums of the form

$$\mathcal{K}_g(a,b) = \sum_{\substack{x=1\\ \text{gcd}(x,t)=1}}^t \exp\left(2\pi i(ag^x + bg^{x^{-1}})/p\right),$$

where g is of multiplicative order t modulo the prime p. We obtain a nontrivial upper bound on these sums on average over all elements g of multiplicative order t, provided that $t \ge p^{3/4+\delta}$ with an arbitrary fixed $\delta > 0$.

1. Introduction. Let p be a prime, and let \mathbf{F}_p be a finite field of p elements. For an integer $t \geq 1$ we denote by $\mathbf{Z}_t = \{0, \ldots, t-1\}$ the residue ring modulo t and we denote by \mathbf{Z}_t^* the subset of \mathbf{Z}_t consisting of $\varphi(t)$ invertible elements, where $\varphi(t)$ is the Euler function. We also identity \mathbf{F}_p with the set $\{0, \ldots, p-1\}$.

Finally we define $\mathbf{e}(z) = \exp(2\pi i z/p)$ and use $\log z$ for the natural logarithm of z.

For a divisor t|p-1 we denote by \mathcal{U}_t the set of elements $g \in \mathbf{F}_p^*$ of multiplicative order t, that is,

$$\mathcal{U}_t = \{ g \in \mathbf{F}_p^* \mid g^s \neq 1, \ 1 \le s < t; \ g^t = 1 \}.$$

It is easy to see that $\#\mathcal{U}_t = \varphi(t)$.

For $g \in \mathcal{U}_t$, we consider exponential sums

$$\mathcal{K}_g(a,b) = \sum_{x \in \mathbf{Z}_t^*} \mathbf{e}(ag^x + bg^{x^{-1}}),$$

where $a, b \in \mathbf{F}_p$.

Received by the editors on October 16, 2001.

Copyright ©2004 Rocky Mountain Mathematics Consortium