EXPONENTIAL FUNCTION ANALOGUE OF KLOOSTERMAN SUMS

IGOR E. SHPARLINSKI

ABSTRACT. We consider exponential sums of the form

$$
\mathcal{K}_{g}(a, b)=\sum_{\substack{x=1 \\ \operatorname{gcd}(x, t)=1}}^{t} \exp \left(2 \pi i\left(a g^{x}+b g^{x^{-1}}\right) / p\right)
$$

where g is of multiplicative order t modulo the prime p. We obtain a nontrivial upper bound on these sums on average over all elements g of multiplicative order t, provided that $t \geq p^{3 / 4+\delta}$ with an arbitrary fixed $\delta>0$.

1. Introduction. Let p be a prime, and let \mathbf{F}_{p} be a finite field of p elements. For an integer $t \geq 1$ we denote by $\mathbf{Z}_{t}=\{0, \ldots, t-1\}$ the residue ring modulo t and we denote by \mathbf{Z}_{t}^{*} the subset of \mathbf{Z}_{t} consisting of $\varphi(t)$ invertible elements, where $\varphi(t)$ is the Euler function. We also identity \mathbf{F}_{p} with the set $\{0, \ldots, p-1\}$.

Finally we define $\mathbf{e}(z)=\exp (2 \pi i z / p)$ and use $\log z$ for the natural logarithm of z.

For a divisor $t \mid p-1$ we denote by \mathcal{U}_{t} the set of elements $g \in \mathbf{F}_{p}^{*}$ of multiplicative order t, that is,

$$
\mathcal{U}_{t}=\left\{g \in \mathbf{F}_{p}^{*} \mid g^{s} \neq 1,1 \leq s<t ; g^{t}=1\right\} .
$$

It is easy to see that $\# \mathcal{U}_{t}=\varphi(t)$.
For $g \in \mathcal{U}_{t}$, we consider exponential sums

$$
\mathcal{K}_{g}(a, b)=\sum_{x \in \mathbf{Z}_{t}^{*}} \mathbf{e}\left(a g^{x}+b g^{x^{-1}}\right)
$$

where $a, b \in \mathbf{F}_{p}$.

[^0]
[^0]: Received by the editors on October 16, 2001.

